Toxicity of Sargassum wightii to the Malaria Vector Anopheles stephensi Liston (Diptera: Culicidae)

Authors

  • Vaithiyanathan Selvi Department of Microbiology, Sourashtra College, Madurai 625004, Tamil Nadu
  • Subramanian Arivoli Department of Zoology, Thiruvalluvar University, Vellore 632115, Tamil Nadu
  • Samuel Tennyson Department of Zoology, Madras Christian College, Chennai 600059, Tamil Nadu

DOI:

https://doi.org/10.55446/IJE.2023.869

Keywords:

Sargassum wightii, brown seaweed, phytochemical constituents, Anopheles stephensi, larvicide

Abstract

Seaweed based pesticides exhibit mosquitocidal properties and are found to be effective, biodegradable and non-toxic to non-target organisms. Sargassum wightii Greville butanol and ethanol extracts were tested for its toxicity against the second and third instar larvae of Anopheles stephensi Liston in the present study. One hundred percent larval mortality was observed in the second instar of An. stephensi by the ethanol extract at the highest concentration of 500 mg/ l after 24 hours of exposure. The LC50 values of S. wightii butanol and ethanol extracts were 107.03 and 89.67 mg/ l, against the second instar of An. stephensi; and 132.56 and 92.00 mg/ l against the third instar of An. stephensi respectively. Phytochemical analysis of S. wightii extracts revealed presence of alkaloids, carbohydrates, fatty acids, flavonoids, phenols, proteins, tannins and terpenes. Larval mortality of second and third instars of An. stephensi can be attributed to the major compounds present in S. wightii revealed by GC-MS analysis, viz., ethyl salicylate, methyl salicylate, ethyl palmitate, palmitic acid, oleic acid, phytolin and diethyl phthalate. The present study accentuates S. wightii butanol and ethanol extracts to cause lethal effects to the second and third instar larvae of An. stephensi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Samuel Tennyson, Department of Zoology, Madras Christian College, Chennai 600059, Tamil Nadu

undefined

Downloads

Published

2023-05-18

How to Cite

Selvi, V., Arivoli, S., & Tennyson, S. (2023). Toxicity of <i>Sargassum wightii</i> to the Malaria Vector <i>Anopheles stephensi</i> Liston (Diptera: Culicidae). Indian Journal of Entomology, 86(1), 87–92. https://doi.org/10.55446/IJE.2023.869

Issue

Section

Research Articles

References

Abbott W S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.

Ahmad R, Yu K X, Wong C L, Jantan I. 2016. Larvicidal and adulticidal activities of Malaysian seaweeds against Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). The Southeast Asian Journal of Tropical Medicine and Public Health 47(4): 719-730.

Ali M S, Ravikumar S, Beula JM. 2012. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae. Asian Pacific Journal of Tropical Biomedicine 2: 570-573.

Ali M S, Ravikumar S, Beula J M. 2013. Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease 3(3): 196-201.

Barbosa J D F, Silva V B, Alves P B, Gumina G, Santos R L C, Sousa D P, Cavalcanti S C H. 2012. Structure–activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Management Science 68: 1478-1483.

Begum F M B, Hemalatha S. 2017. Characterization, in silico and in vitro determination of antidiabetic and anti-inflammatory potential of ethanolic extract of Sargassum wightii. Asian Journal of Pharmaceutical and Clinical Research 10(4): 297-301.

Bibi R, Tariq R M, Rasheed M. 2020. Toxic assessment, growth disrupting and neurotoxic effects of red seaweeds’ botanicals against the dengue vector mosquito Aedes aegypti L. Ecotoxicology and Environmental Safety 195: 110451.

Blunt J W, Copp B R, Hu W P, Munro M H, Northcote P T, Prinsep M R. 2011. Marine natural products. Natural Product Reports 28(2): 196-268.

Das P K, Gunasekaran K, Sahu S S, Sadanandane C, Jambulingam P. 1990. Seasonal prevalence and resting behaviour of malaria vectors in Koraput district, Orissa. Indian Journal of Malariology 27(3): 173-181.

Deepak P, Balamuralikrishnan B, Park S, Sowmiya R, Balasubramani G, Aiswarya D, Amutha V, Perumal P. 2019. Phytochemical profiling of marine red alga, Halymenia palmata and its bio-control effects against dengue vector, Aedes aegypti. South African Journal of Botany 121: 257-266.

de Melo A R, Garcia I J P, Serrão J E, Santos H L, dos Santos Lima L A R, Alves S N. 2018. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicology and Environmental Safety 154: 1-5.

Demirak M S S, Canpolat E. 2022. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission. Insects 13: 162.

Dhargalkar V K, Kavlekar D. 2004. Seaweeds - a field manual. (1st edn). National Institute of Oceanography, Goa, India.

Elbanna S, Hegazi M. 2011. Screening of some seaweeds species from South Sinai, Red sea as potential bioinsecticides against mosquito larvae; Culex pipiens. Egyptian Academic Journal of Biological Sciences A, Entomology 4(2): 21-30.

Ghosh A, Chowdhury N, Chandra G. 2012. Plant extracts as potential larvicides. Indian Journal of Medical Research 135: 581-598.

Haleem D R A, E l Tablawy N H, Alkeridis L A, Sayed S, Saad AM, El-Saadony M T, Farag S M. 2022. Screening and evaluation of different algal extracts and prospects for controlling the disease vector mosquito Culex pipiens L. Saudi Journal of Biological Sciences 29: 933-940.

Harborne J B. 1978. Phytochemical methods (3rd edn). Chapman and Hall, London.

Kaushik S, Sharma N R, Thomas T G, Sharma A K, Bansal A. 2019. Indigenous plants and their larvicidal potential against Indian mosquito vectors: A review. Journal of Communicable Diseases 51(2): 59-72.

Korgaonkar N S, Kumar A, Yadav R S, Kabadi D, Dash A P. 2012. Mosquito biting activity on humans and detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India. Indian Journal of Medical Research 135: 120-126.

Krishnaveni S, Ramamurthy V. 2014. Larvicidal efficacy of leaf extracts of Heliotropium indicum and Mukia maderaspatana against the dengue fever mosquito vector Aedes aegypti. Journal of Entomology and Zoology Studies 40: 40-45.

Kumar K P, Murugan K, Kovendan K, Kumar A N, Hwang J S, Barnard D R. 2012. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito, Anopheles sundaicus, in Tamil Nadu, India. Science Asia 38: 141-146.

Kumar D, Chawla R, Dhamodaram P, Balakrishnan N. 2014. Larvicidal activity of Cassia occidentalis (Linn.) against the larvae of bancroftian filariasis vector mosquito Culex quinquefasciatus. Journal of Parasitology Research http://dx.doi.org/10.1155/2014/236838.

Manikandan S, Mathivanan S, Bora B, Hemaladkshmi P, Abhisubesh V. Poopathi S. 2022. A review on vector borne disease transmission: Current strategies of mosquito vector control. Indian Journal of Entomology DoI. No.: 10.55446/IJE.2022.593.

Manilal A, Sujith S, Kiran G S, Selvin J, Shakir C, Gandhimathi R, Panikkar M V N. 2009. Biopotentials of seaweeds collected from southwest coast of India. Journal of Marine Science and Technology 17(1): 67-73.

Manilal A, Thajuddin N, Selvin J, Idhayadhulla A, Kumar R S, Sujith S. 2011. In vitro mosquito larvicidal activity of marine algae against the human vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). International Journal of Zoological Research 7(3): 272-278.

Muhammed M, Dugassa S, Belina M, Zohdy S, Irish S R, Gebresilassie A. 2022. Insecticidal effects of some selected plant extracts against Anopheles stephensi (Culicidae: Diptera). Malaria Journal 21: 295.

Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C M, Nicoletti, Hwang J S, Kumar P M, Subramaniam J, Suresh U. 2015. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitology Research 114(6): 2243-2253.

Murugan K, Roni M, Panneerselvam C, Aziz A T, Suresh U, Rajaganesh R, Aruliah R, Mahyoub J A, Trivedi S, Rehman H, Al-Aoh H A N, Kumar S, Higuchi A, Vaseeharan B, Wei H, Senthil-Nathan S, Canalem A, Benelli G. 2018. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiological and Molecular Plant Pathology 101: 202-213.

Poonguzhali T V, Nisha J L L L. 2012. Larvicidal activity of two seaweeds, Chaetomorpha antennina (Bory de Saint-Vincent) Kützing and Sargassum wightii Greville against mosquito vector, Anopheles stephensi. Journal of Research in Biology 2(8): 711-715.

Rao S G. 2012. Common seaweeds and seagrasses of India. Herbarium Volume 1, Central Marine Fisheries Research Institute, Kerala, India.

Raveen R, Ahmed F, Pandeeswari M, Reegan D, Samuel T, Arivoli S, Jayakumar M. 2017. Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and Zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). International Journal of Mosquito Research 4(4): 17-28.

Ravikumar S, Ali M S, Beula J M. 2011. Mosquito larvicidal efficacy of seaweeds extracts against dengue vector of Aedes aegypti. Asian Pacific Journal of Tropical Biomedicine 1(2): S143-S146.

Rey D, Pautou M P, Meyran J C. 1999. Histopathological effects of tannic acid on the midgut epithelium of some aquatic diptera larvae. Journal of Invertebrate Pathology 73: 173-181.

Samuel T, Arivoli S, Raveen R, Selvakumar S, Jayakumar M, Kumar L.2018. Bioefficacy of Catharanthus roseus (L.) G. Don(Apocyanaceae) and Hyptis suaveolens (L.) Poit (Lamiaceae)ethanolic aerial extracts on the larval instars of the dengue andchikungunya vector Aedes aegypti Linnaeus 1762 (Diptera:Culicidae). International Journal of Mosquito Research 5(4): 7-18.

Shaalan E A S, Canyon D, Younes M W F, Wahab H A, Mansour A H. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environmental International 31:1149-1166.

Siam M A H, Owaresat J K, Khan A R. 2022. Mosquito control management using phytochemicals: A review. International Journal of Mosquito Research 9(3): 10-17.

Sina I Z, Shukri M S M. 2016. Larvicidal activities of extract flower Averrhoa bilimbi L. towards important species mosquito, Anopheles barbirostris (Diptera: Culicidae). International Journal of Zoological Research 12(1): 25-31.

Spielman A, Lemma A. 1973. Endod extract, a plant-derived molluscicide: toxic for mosquitoes. American Journal of Tropical Medicine and Hygiene 22: 802-804.

SPSS. 2010. IBM SPSS statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Suganya S, Ishwarya R, Jayakumar R, Govindarajan M, Alharbi N S, Kadaikunnan S, Khaled J M, Al-anbr M N, Vaseeharan B. 2019. New insecticides and antimicrobials derived from Sargassum wightii and Halimeda gracillis seaweeds: Toxicity against mosquito vectors and antibiofilm activity against microbial pathogens. South African Journal of Botany 125: 466-480.

Thangam T S, Kathiresan K. 1991a. Mosquito larvicidal effect of seaweed extracts. Botanica Marina 34: 433-435.

Thangam T S, Kathiresan K. 1991b. Mosquito larvicidal activity of marine plant extracts with synthetic insecticides. Botanica Marina 34: 537-539.

Thangam T S, Kathiresan K. 1996. Marine plants for mosquito control. In: Wildey KB (Ed) Proceedings of the second international conference on urban pests. Edinburgh, Scotland.

Vogel A L. 1978. Text book of practical organic chemistry. London: The English Language Book Society and Longman.

WHO. 2005. Guidelines for laboratory and field testing of mosquito larvicides. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/13.

WHO. 2019. https://www.who.int/srilanka/news/detail/08-07-2019-preventive-action-is-vital-to-curtaildengue-outbreaks-in-sri-lanka.

WHO. 2020. Pictorial identification key of important disease vectors in the WHO South-East Asia Region. World Health Organization.

WHO. 2021. Malaria fact sheet. https://www.who.int/news-room/fact-sheets/detail/malaria.

Yasmeen A, Qasim M, Ahmed A, Uddin N, Ahmed Z, Ali MS, Rasheed M.2018. GC-MS and antioxidant studies on botanicals fromSargassum wightii: Natural product study revealing environmental contaminants. Journal of the Chemical Society of Pakistan 40(1):201-212.

Yu K X, Jantan I, Ahmad R, Wong C L. 2014. The major bioactive components of seaweeds and their mosquitocidal potential. Parasitology Research 113(9): 3121-3141.