Insect Gut Microbiota and Pesticide Degradation in Response to Innate Metabolites - a Review

Authors

  • Saleem Jaffar Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640
  • Muhammad Yasin University of Baltistan, Skardu Department of Zoology
  • Muhammad mazahir Institute of Food and Nutritional Sciences PMAS-Arid Agriculture University Rawalpindi 46300
  • AJmal Hussain University of Baltistan, Skardu Department of Zoology
  • Aftab Ahmad Khan Agricultural Research Institute (ARI), Swat, KPK
  • Hongai Su Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640
  • Tian zeng Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640

DOI:

https://doi.org/10.55446/IJE.2024.856

Keywords:

Insect gut, microbiota, Drosophila, Bactrocera, pesticides, degradation, primary and secondary symbionts, enzymes, metabolites, physiology, insecticides, microorganisms, xenobiotics.

Abstract

Insects host a diverse microbiota in their gut, encompassing bacteria, fungi, viruses, and archaea, influencing their physiology, nutrition, and overall health. The composition of these microbial communities varies with factors like insect species, diet, and the environment. Insect gut microbiota serve pivotal roles such as aiding digestion, synthesizing essential nutrients, safeguarding against pathogens, and detoxifying toxins, including insecticides. A particularly promising facet of their function lies in influencing the metabolism of insecticides. These gut microbiotas can either augment or diminish insecticide toxicity through mechanisms like enzymatic breakdown, sequestration, target site alteration, or modulation of the insect's immune response. Understanding these interactions is paramount for devising sustainable pest management strategies. This review explores into insect gut microbiota, their impact on insecticide susceptibility, and the potential use of microbial metabolites in eco-friendly pest control. We explore pesticide degradation mechanisms, the consequences of microbiota disruption on susceptibility, and the role of microbiota-produced metabolites in shaping pesticide efficacy. Ultimately, we highlight the potential of microbiota manipulation as a strategy to enhance insecticide effectiveness and combat pesticide resistance in pest management.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-01-23

How to Cite

Jaffar, S., Yasin, M., mazahir, M., Hussain, A., Khan, A. A., Su, H., & zeng, T. (2024). Insect Gut Microbiota and Pesticide Degradation in Response to Innate Metabolites - a Review. Indian Journal of Entomology, 86(1), 275–286. https://doi.org/10.55446/IJE.2024.856

Issue

Section

Review Articles

References

Amezian D, Nauen R, Le Goff G. 2021. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. Pesticide Biochememistry and Physiology 174: 104822. DOI: https://doi.org/10.1016/j.pestbp.2021.104822

Bai Z, Liu L, Noman MS, Zeng L, Luo M, Li Z. 2019. The influence of antibiotics on gut bacteria diversity associated with laboratory-reared Bactrocera dorsalis. Bulletin of Entomological Research 109(4): 500-509. DOI: https://doi.org/10.1017/S0007485318000834

Barnard K, Jeanrenaud A C S N, Brooke B D, Oliver SV. 2019. The contribution of gut bacteria to insecticide resistance and the life histories of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Scientific Reports 9(1): 9117. DOI: https://doi.org/10.1038/s41598-019-45499-z

Blanco C A, Andow D A, Abel C A. 2009. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 102(1): 381-387. DOI: https://doi.org/10.1603/029.102.0149

Bloemendaal M, Szopinska-Tokov J, Belzer C. 2021. Probiotics-induced changes in gut microbial composition and its effects on cognitive performance after stress: exploratory analyses. Translational Psychiatry 11(1): 300. DOI: https://doi.org/10.1038/s41398-021-01404-9

Blow F, Douglas A E. 2019. The hemolymph microbiome of insects. Journal of Insect Physiology 115: 33-39. DOI: https://doi.org/10.1016/j.jinsphys.2019.04.002

Chaitra H, Kalia V K. 2020. Influence of midgut bacteria on toxicity of Bacillus thuringiensis to pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Journal of Entomology and Zoology Studies 8(6):1758-1763.

Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. 2017. Gut symbiont enhances insecticide resistance in a significant pest, the Oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5(1): 1-12. DOI: https://doi.org/10.1186/s40168-017-0236-z

Cohn Z, Latty T, Abbas A. 2022. Understanding dietary carbohydrates in black soldier fly larvae treatment of organic waste in the circular economy. Waste Management 137: 9-19. DOI: https://doi.org/10.1016/j.wasman.2021.10.013

Cruse C, Moural TW, Zhu F. 2023. Dynamic roles of insect carboxyl/cholinesterases in chemical adaptation. Insects 14(2): 194. DOI: https://doi.org/10.3390/insects14020194

Csorba AB, Fora C, Bálint J, . 2022. Endosymbiotic bacterial diversity of corn leaf aphid, Rhopalosiphum maidis Fitch (Hemiptera: Aphididae) associated with maize management systems. Microorganisms 10. DOI: https://doi.org/10.3390/microorganisms10050939

Engel P, Moran N A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37(5): 699-735. DOI: https://doi.org/10.1111/1574-6976.12025

Frago E, Zytynska S E, Fatouros N E. 2020. Microbial symbionts of herbivorous species across the insect tree Advances in insect physiology. Elsevier 58. pp. 111-159. DOI: https://doi.org/10.1016/bs.aiip.2020.04.002

Francis C F S, Aneesh E M. 2022. Gut bacterium induced pesticide resistance in insects with special emphasis to mosquitoes. International Journal of Tropical Insect Science 42(3): 2051-2064. DOI: https://doi.org/10.1007/s42690-022-00761-2

French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu C H, Enders L. 2021. Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants 7(3): 256-267. DOI: https://doi.org/10.1038/s41477-020-00830-9

Gao L, Qiao H, Wei P, Moussian B, Wang Y. 2022. Xenobiotic responses in insects. Archives of Insect Biochemistry and Physiology 109(3): e21869. DOI: https://doi.org/10.1002/arch.21869

Giambò F, Teodoro M, Costa C, Fenga C. 2021. Toxicology and microbiota: How do pesticides influence gut microbiota? A review. International Journal of Environmental Research and Public Health 18(11): 5510. DOI: https://doi.org/10.3390/ijerph18115510

Gomes A F F, de Almeida L G, Cônsoli F L. 2023. Comparative genomics of pesticide-degrading Enterococcus symbionts of Spodoptera frugiperda (Lepidoptera: Noctuidae) leads to the identification of two new species and the reappraisal of insect-associated Enterococcus species. Microbial Ecology. 1-23. DOI: https://doi.org/10.1101/2023.04.20.537713

Gomes A F F, Omoto C, Cônsoli F L. 2020. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science 93(2): 833-851. DOI: https://doi.org/10.1007/s10340-020-01202-0

Gómez-Govea M A, Ramírez-Ahuja MdL, Contreras-Perera Y. 2022. Suppression of midgut microbiota impact pyrethroid susceptibility in Aedes aegypti. Frontiers in Microbiology 13. doi:10.3389/fmicb.2022.761459. DOI: https://doi.org/10.3389/fmicb.2022.761459

Guarner F, Khan A G, Garisch J. 2012. World gastroenterology organisation global guidelines: probiotics and prebiotics October 2011. Journal of Clinical Gastroenterology 46(6): 468-481. DOI: https://doi.org/10.1097/MCG.0b013e3182549092

Guentzel M N. 1996. Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In: Baron S (ed) Medical Microbiology. University of Texas Medical Branch at Galveston.

Copyright ©. 1996. The University of Texas Medical Branch at Galveston., Galveston (TX).

Gui S, Yuval B, Engl T, Lu Y, Cheng D. 2023. Protein feeding mediates sex pheromone biosynthesis in an insect. eLife 12. doi:10.7554/eLife.83469. He M, Chen H, Yang X, Gao Y, Lu Y, Cheng D. 2022. Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. Communications Biology 5(1): 973. DOI: https://doi.org/10.7554/eLife.83469

Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. 2019. Extracellular nutrient digestion and absorption in the insect gut. Cell and Tissue Research 377(3):n397-414. doi:10.1007/s00441-019-03031-9. DOI: https://doi.org/10.1007/s00441-019-03031-9

HS C, KKalia V. 2022. Gut Symbionts: Hidden Players of Pesticide, Resistance in Insects. Indian Journal of Entomology 84(4).

Huang H, Li H, Ren L, Cheng D. 2019. Microbial communities in different developmental stages of the Oriental fruit fly Bactrocera dorsalis are associated with differentially expressed peptidoglycan recognition protein genes. Applied and Environmental Microbiology 85. doi:10.1128/AEM.00803-19. DOI: https://doi.org/10.1128/AEM.00803-19

Huang H, Ren L, Li H. 2020. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathogens 16: e1008800. doi:10.1371/journal.ppat.1008800. DOI: https://doi.org/10.1371/journal.ppat.1008800

Huang Y, Shen G-M, Jiang H-B, Jiang X-Z, Dou W, Wang J-J. 2013. Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pesticide Biochemistry and Physiology 106(1): 1-7. DOI: https://doi.org/10.1016/j.pestbp.2013.03.001

Jaffar S, Ahmad S, Lu Y. 2022. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Frontiers in Microbiology 13. doi:10.3389/fmicb.2022.979383. DOI: https://doi.org/10.3389/fmicb.2022.979383

Jaffar S, Lu Y. 2022. Toxicity of some essential oils constituents against oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Insects 13(10): 954. DOI: https://doi.org/10.3390/insects13100954

Jaffar S, Rizvi SAH, Lu Y. 2023. Understanding the invasion, ecological adaptations, and management strategies of Bactrocera dorsalis in China: A Review. Horticulturae 9(9): 1004. DOI: https://doi.org/10.3390/horticulturae9091004

Jang S, Kikuchi Y. 2020. Impact of the insect gut microbiota on ecology, evolution, and industry. Current Opinion in Insect Science 41: 33-39. DOI: https://doi.org/10.1016/j.cois.2020.06.004

Jing T-Z, Qi F-H, Wang Z-Y. 2020. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8(1): 38. doi:10.1186/s40168-020-00823-y. DOI: https://doi.org/10.1186/s40168-020-00823-y

Khan B A, Nadeem M A, Nawaz H. 2023. Pesticides: Impacts on agriculture productivity, environment and management strategies. Aftab T (ed) Emerging contaminants and plants: interactions, adaptations and remediation technologies. springer International Publishing, Cham. pp. 109-134. DOI: https://doi.org/10.1007/978-3-031-22269-6_5

Khan M A, Ahmad W. 2019. Synthetic chemical insecticides: environmental and agro contaminants. Khan M A, Ahmad W (eds). Microbes for sustainable insect pest management : an eco-friendly approach - Volume 1. Springer International Publishing, Cham. pp. 1-22. DOI: https://doi.org/10.1007/978-3-030-23045-6_1

Koc S, Aydin L, Cetin H. 2022. The first study on fipronil, chlorpyrifos-methyl and permethrin resistance in Rhipicephalus sanguineus sensu lato ticks from Turkey. International Journal of Tropical Insect Science 42(1): 597-602. DOI: https://doi.org/10.1007/s42690-021-00578-5

Li C, Zhu H, Li C, Qian H, Yao W, Guo Y. 2021. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chemistry 354: 129552. doi:https://doi.org/10.1016/j.foodchem.2021.129552. DOI: https://doi.org/10.1016/j.foodchem.2021.129552

Li H, Ren L, Xie M. 2020. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Current Biology 30: 1-9. DOI: https://doi.org/10.1016/j.cub.2020.08.080

Li R, Zhu B, Hu X-p. 2022a. Overexpression of PxαE14 contributing to detoxification of multiple insecticides in Plutella xylostella (L.). Journal of Agricultural and Food Chemistry 70(19): 5794-5804. doi:10.1021/acs.jafc.2c01867. DOI: https://doi.org/10.1021/acs.jafc.2c01867

Li S, Tang R, Yi H. 2022b. Neutral processes provide an insight into the structure and function of gut microbiota in the cotton bollworm. Frontiers in Microbiology 13: 849637. doi:10.3389/fmicb.2022.849637. DOI: https://doi.org/10.3389/fmicb.2022.849637

Li X, Huang Q, Yuan J, Tang Z. 2007. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pesticide Biochemistry and Physiology 89(3): 169-174. DOI: https://doi.org/10.1016/j.pestbp.2007.06.002

Li X, Sun Y, Tian X. 2023. Sitobion miscanthi L type symbiont enhances the fitness and feeding behavior of the host grain aphid. Pest Management Science 79(4):1362-1371. DOI: https://doi.org/10.1002/ps.7308

Li X, Wu Q, Wu J. 2022c. Effects of four chemosterilants on Bactrocera tau. Ecotoxicology and Environmental Safety 243: 114028. DOI: https://doi.org/10.1016/j.ecoenv.2022.114028

Lillehoj H, Liu Y, Calsamiglia S. 2018. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research 49(1): 76. doi:10.1186/s13567-018-0562-6. DOI: https://doi.org/10.1186/s13567-018-0562-6

Lin X-L, Kang Z-W, Pan Q-J, Liu T-X. 2015. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae). Insect Science 22(5): 619-628. DOI: https://doi.org/10.1111/1744-7917.12168

Lin Y C, Chen E H, Chen R P, Dunny G M, Hu W S, Lee K T. 2021. Probiotic bacillus affects Enterococcus faecalis antibiotic resistance transfer by interfering with pheromone signaling cascades. Applied Environmental Microbiology 87(13): e0044221. doi:10.1128/aem.00442-21. DOI: https://doi.org/10.1128/AEM.00442-21

Liu B, Lu Y, Wan F, Gershenzon J, Cheng D. 2022. Biological invasion of insects: the roles of microbes. Entomologia Generalis 42. doi:10.1127/entomologia/2022/1690. DOI: https://doi.org/10.1127/entomologia/2022/1690

Liu X-D, Guo H-F. 2019. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinion in Insect Science 33: 84-90. DOI: https://doi.org/10.1016/j.cois.2019.05.003

Lu K, Song Y, Zeng R. 2021. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science 43: 103-107. DOI: https://doi.org/10.1016/j.cois.2020.11.004

Mahas J W, Steury T D, Huseth A S, Jacobson A L. 2023. Imidacloprid-resistant Aphis gossypii populations are more common in cotton-dominated landscapes. Pest Management Science 79(3): 1040-1047. DOI: https://doi.org/10.1002/ps.7274

Marcombe S, Poupardin R, Darriet F. 2009. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics 10: 494. doi:10.1186/1471-2164-10-494. DOI: https://doi.org/10.1186/1471-2164-10-494

Martin P A, Jayanthi D, Sebastian L. 2023. Chapter 33 - Primary and secondary endosymbionts aphid: Buchnera sps. Dharumadurai D (ed) Microbial symbionts. Academic Press, pp. 587-598. DOI: https://doi.org/10.1016/B978-0-323-99334-0.00010-4

McCutcheon J P, Boyd B M, Dale C. 2019. The life of an insect endosymbiont from the cradle to the grave. Current Biology 29(11): R485-R495. doi: https://doi.org/10.1016/j.cub.2019.03.032. DOI: https://doi.org/10.1016/j.cub.2019.03.032

Meng L W, Yuan G R, Lu X P. 2019. Two delta class glutathione S-transferases involved in the detoxification of malathion in Bactrocera dorsalis (Hendel). Pest Management Science 75(6): 1527-1538. DOI: https://doi.org/10.1002/ps.5318

Miller W J. 2013. Bugs in transition: the dynamic world of Wolbachia in insects. PLoS Genetics 9(12): e1004069. DOI: https://doi.org/10.1371/journal.pgen.1004069

Motta E V S, Powell J E, Moran N A. 2022. Glyphosate induces immune dysregulation in honey bees. Animal Microbiome 4(1): 16. DOI: https://doi.org/10.1186/s42523-022-00165-0

Muñoz-Benavent M, Pérez-Cobas A E, García-Ferris C, Moya A, Latorre A. 2021. Insects’ potential: Understanding the functional role of their gut microbiome. Journal of Pharmaceutical and Biomedical Analysis 194: 113787. doi:https://doi.org/10.1016/j.jpba.2020.113787. DOI: https://doi.org/10.1016/j.jpba.2020.113787

Muñoz I J, Schilman P E, Barrozo R B. 2020. Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Scientific Reports 10(1): 9443. doi:10.1038/s41598-020-65932-y. DOI: https://doi.org/10.1038/s41598-020-65932-y

Myint Khaing M, Yang X, Zhao M. (2018) Effects of antibiotics on biological activity of Cry1Ac in Bt-susceptible and Bt-resistant Helicoverpa armigera strains. Journal of Invertebrate Pathology 151: 197-200. DOI: https://doi.org/10.1016/j.jip.2017.10.007

Naqqash M N, Gökçe A, Bakhsh A, Salim M. 2016. Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research 115(4): 1363-73. DOI: https://doi.org/10.1007/s00436-015-4898-9

Nauen R, Bass C, Feyereisen R, Vontas J. 2022. The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology 67: 105-124. DOI: https://doi.org/10.1146/annurev-ento-070621-061328

Nováková E, Husník F, Šochová E, Hypša V. 2015. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wiggles worthia and Sodalis system in tsetse flies. Applied and Environmental Microbiology 81(18): 6189-6199. DOI: https://doi.org/10.1128/AEM.01487-15

Paramasiva I, Shouche Y, Kulkarni G J, Krishnayya P V, Akbar S M, Sharma H C. 2014. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Archives of Insect Biochemistry and Physiology 87(4): 201-13. DOI: https://doi.org/10.1002/arch.21190

Pickett B R, Gulzar A, Ferré J, Wright D J. 2017. Bacillus thuringiensis Vip3Aa Toxin Resistance in Heliothis virescens (Lepidoptera: Noctuidae). Appl Environ Microbiol 83(9). doi:10.1128/aem.03506-16. DOI: https://doi.org/10.1128/AEM.03506-16

Ramya S L, Venkatesan T, Srinivasa Murthy K, Jalali S K, Verghese A.2016. Detection of carboxylesterase and esterase activity inculturable gut bacterial flora isolated from diamondback moth,Plutella xylostella (Linnaeus), from India and its possible role inindoxacarb degradation. Brazilian Journal of Microbiology 47(2): 327-336. DOI: https://doi.org/10.1016/j.bjm.2016.01.012

Rashmi D, Zanan R, John S, Khandagale K, Nadaf A. 2018. Chapter 13 - γ-Aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications. Atta ur R (ed.) Studies in Natural Products Chemistry. Elsevier 57: 413-452. DOI: https://doi.org/10.1016/B978-0-444-64057-4.00013-2

Ren L, Ma Y, Xie M, Lu Y, Cheng D. 2021. Rectal bacteria produce sex pheromones in the male Oriental fruit fly. Current Biology 31(10): 2220-2226. e4. DOI: https://doi.org/10.1016/j.cub.2021.02.046

Sato Y, Jang S, Takeshita K. 2021. Insecticide resistance by a host-symbiont reciprocal detoxification. Nature Communications 12(1): 6432. doi:10.1038/s41467-021-26649-2. DOI: https://doi.org/10.1038/s41467-021-26649-2

Schmidt K, Engel P. 2021. Mechanisms underlying gut microbiota-host interactions in insects. Journal of Experimental Biology 224(Pt 2). doi:10.1242/jeb.207696. DOI: https://doi.org/10.1242/jeb.207696

Scudder G G E. 2017. The importance of insects insect biodiversity. pp. 9-43. DOI: https://doi.org/10.1002/9781118945568.ch2

Seal M, Chatterjee S. 2019. Gut bacteria diversity in anopheline mosquitoes and prospects in vector control-A Review. Indian Journal of Entomology 81(4): 795-800. DOI: https://doi.org/10.5958/0974-8172.2019.00167.6

Siddiqui J A, Khan M M, Bamisile B S. 2022. Role of insect gut microbiota in pesticide degradation: A review. Frontiers in Microbiology 13: 870462. doi:10.3389/fmicb.2022.870462. DOI: https://doi.org/10.3389/fmicb.2022.870462

Singh C K, Sodhi K K, Yadav P. 2022. Cultivable gut microbial diversity of irradiated Spodoptera litura (F.). Indian Journal of Entomology 1-9. DOI: https://doi.org/10.55446/IJE.2022.690

Sogorb M A, Vilanova E. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Letters 128(1-3): 215-28. DOI: https://doi.org/10.1016/S0378-4274(01)00543-4

Štarhová Serbina L, Gajski D, Pafčo B. 2022. Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environmental Microbiology 24(12): 5788-5808. DOI: https://doi.org/10.1111/1462-2920.16180

Tan Y, Gong B, Zhang Q. 2023. Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications. Frontiers in Microbiology 14: 1124386. DOI: https://doi.org/10.3389/fmicb.2023.1124386

Thakur A, Kumar S M, Saranya N, Nakkeeran S, Srinivasan M, Subramanian S. 2023. Characterisation of the gut bacteriome of hill and plain race of indian honey bee Apis cerana Fabricius. Indian Journal of Entomology pp. 19-27. DOI: https://doi.org/10.55446/IJE.2022.982

Tian Z, Zhu L, Michaud JP. 2023 Metabolic reprogramming of Helicoverpa armigera larvae by HearNPV facilitates viral replication and host immune suppression. Molecular Ecology 32(5): 1169-1182. DOI: https://doi.org/10.1111/mec.16817

Torres-Vila L M, Rodrı́guez-Molina M C, Lacasa-Plasencia A, Bielza-Lino P. 2002. Insecticide resistance of Helicoverpa armigera to endosulfan, carbamates and organophosphates: the Spanish case. Crop Protection 21(10): 1003-1013. DOI: https://doi.org/10.1016/S0261-2194(02)00081-9

Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani M K. 2020. Glutathione S-transferase: a versatile protein family. 3 Biotech 10(7): 321 DOI: https://doi.org/10.1007/s13205-020-02312-3

Wang H, Jin L, Zhang H. 2011. Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology 110(6): 1390-1401. DOI: https://doi.org/10.1111/j.1365-2672.2011.05001.x

Wang S, Wang L, Fan X, Yu C, Feng L, Yi L. 2020. An insight into diversity and functionalities of gut microbiota in insects. Current Microbiology 77(9): 1976-1986. DOI: https://doi.org/10.1007/s00284-020-02084-2

Wang X, Zhang X, Zhang Z, Lang H, Zheng H. 2018. Honey bee as a model organism to study gut microbiota and diseases. Drug Discovery Today: Disease Models 28: 35-42. DOI: https://doi.org/10.1016/j.ddmod.2019.08.010

Xia X, Sun B, Gurr G M, Vasseur L, Xue M, You M. 2018. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology 9: 25. DOI: https://doi.org/10.3389/fmicb.2018.00025

Yang T, Li T, Feng X, Li M, Liu S, Liu N. 2021. Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Scientific Reports 11(1): 9041. doi:10.1038/s41598-021-88121-x. DOI: https://doi.org/10.1038/s41598-021-88121-x

Yang W, Cong Y. 2021. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology 18(4): 866-877. DOI: https://doi.org/10.1038/s41423-021-00661-4

Yun J H, Roh S W, Whon T W. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied Environmental Microbiology 80(17): 5254-64. DOI: https://doi.org/10.1128/AEM.01226-14

Zhang H, Li F, Cheng C, Jiao D, Zhou Z, Cheng L. 2013. The identification and characterisation of a new deltamethrin resistance-associated gene, UBL40, in the diamondback moth, Plutella xylostella (L.). Gene 530(1): 51-56. DOI: https://doi.org/10.1016/j.gene.2013.07.075

Zhang X, Wang X, Guo Z. 2022a. Antibiotic treatment reduced the gut microbiota diversity, prolonged the larval development period and lessened adult fecundity of Grapholita molesta (Lepidoptera: Tortricidae). Insects 13(9). doi:10.3390/insects13090838. DOI: https://doi.org/10.3390/insects13090838

Zhang Z, Mu X, Cao Q, Shi Y, Hu X, Zheng H. 2022b. Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nature Communications 13(1): 2037. doi:10.1038/s41467-022-29760-0. DOI: https://doi.org/10.1038/s41467-022-29760-0

Zhao M, Lin X, Guo X. 2022. The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Insects 13(7). doi:10.3390/insects13070583. DOI: https://doi.org/10.3390/insects13070583

Zhou C, Yang H, Wang Z, Long G-y, Jin D-c. 2018. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides. Scientific Reports 8(1): 8773. doi:10.1038/s41598-018-27062-4. DOI: https://doi.org/10.1038/s41598-018-27062-4

Zhu Q, Li F, Shu Q. 2023. Disruption of peritrophic matrix chitin metabolism and gut immune by chlorantraniliprole results in pathogenic bacterial infection in Bombyx mori. Pesticide Biochemistry and Physiology 193: 105430. doi: https: //doi.org/10.1016/j.pestbp.2023.105430. DOI: https://doi.org/10.1016/j.pestbp.2023.105430

Zilnik G, Burrack H J. 2021. Susceptibility of North Carolina Chloridea (Heliothis) virescens (Lepidoptera: Noctuidae) populations from flue cured tobacco to chlorantraniliprole. Journal of Economic Entomology 114(3): 1166-1172. DOI: https://doi.org/10.1093/jee/toab055