Proteomic Analysis of Cowpea Aphid Aphis craccivora Koch Salivary Gland Using LC-MS/MS Analysis


  • S. Pavithran Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu
  • M. Murugan Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu
  • M. Jayakanthan Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu
  • V. Balasubramani Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu
  • S. Harish Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu
  • N. Senthil Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu



Aphis craccivora, Vigna radiata, salivary gland, protein, LC-MS/MS, digestion, detoxification enzymes, functional annotation, gland dissection, proteomic analysis


The present study identified 151 proteins from the salivary gland of cowpea aphid Aphis craccivora Koch, using LC-MS/MS analysis. These included enzymes mainly involved in the digestion and detoxification of secondary metabolites and proteins related to cell development and molecular function. Enzymes like peroxidase, trehalase, cytochrome P450 monooxygenase, glutathione peroxidase, esterase, peptidase, carboxypeptidase, maltase, and beta-galactosidase were prevalent in the proteome. Additionally, several proteins were assigned to cellular and molecular functions of salivary gland. These proteins may be involved in host-plant interactions. Comprehensively, these results provide a database for elucidating aphid-plant interactions at the molecular level in the future.


Download data is not yet available.


Metrics Loading ...




How to Cite

Pavithran, S., Murugan, M., Jayakanthan, M., Balasubramani, V., Harish, S., & Senthil, N. (2024). Proteomic Analysis of Cowpea Aphid <i>Aphis craccivora</i> Koch Salivary Gland Using LC-MS/MS Analysis. Indian Journal of Entomology, 86(2), 385–390.



Research Articles


Blackman R L, Eastop V F. 2000. Aphids on the world's crops: an identification and information guide (No. Ed. 2). John Wiley & Sons Ltd, New York.

Blum M, Chang H Y, Chuguransky S, Grego T, Kandasaamy S. Mitchell A, Finn R D. 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research 49(D1): D344-D354. DOI:

Boukar O, Fatokun C A, Huynh B L, Roberts P A, Close T J. 2016. Genomic tools in cowpea breeding programs: status and perspectives. Frontiers in Plant Science 7: 757. DOI:

Cantón P E, Bonning B C. 2020. Extraoral digestion: outsourcing the role of the hemipteran midgut. Current Opinion in Insect Science 41: 86-91. DOI:

Cardona J B, Grover S, Busta L, Sattler S E, Louis J. 2023. Sorghum cuticular waxes influence host plant selection by aphids. Planta 257(1): 22. DOI:

Dedryver C A, Le Ralec A, Fabre F. 2010. The conflicting relationships between aphids and men: a review of aphid damage and control strategies. Comptes Rendus Biologies 333(6-7): 539-553. DOI:

Hattori M, Komatsu S, Noda H, Matsumoto Y. 2015. Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS One 10(4): e0123671. DOI:

Hewer A, Will T, van Bel A J. 2010. Plant cues for aphid navigation in vascular tissues. Journal of Experimental Botany 213(23): 4030-4042. DOI:

Hogenhout S A, Bos J I. 2011. Effector proteins that modulate plant– insect interactions. Current Opinion in Plant Biology 14(4): 422-428. DOI:

Huang H J, Ye Z X, Lu G, Zhang C X, Chen J P, Li J M. 2021. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC–MS/MS analyses. Insect Science 28(5): 1369-1381. DOI:

Jones J D, Dangl J L. 2006. The plant immune system. Nature 444(7117): 323-329. DOI:

Kaloshian I, Walling L L. 2016. Hemipteran and dipteran pests: effectors and plant host immune regulators. Journal of Integrative Plant Biology 58(4): 350-361. DOI:

Kanehisa M. 2002. The KEGG database. In ‘In silico’simulation of biological processes: Novartis Foundation Symposium 247 (Vol. 247, pp. 91-103). Chichester, UK: John Wiley & Sons, Ltd. DOI:

Liu X, Zhou H, Zhao J, Hua H, He Y. 2016. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and shotgun LC–MS/MS approach. Journal of Insect Physiology 89: 60-69. DOI:

Louis J, Shah J. 2015. Plant defence against aphids: the PAD4 signalling nexus. Journal of Experimental Botany 66(2): 449-454. DOI:

Louis J, Singh V, Shah J. 2012. Arabidopsis thaliana—aphid interaction. Arabidopsis Book, 10: e0159. DOI:

Mafa M S, Rufetu E, Alexander O, Kemp G, Mohase L. 2022. Cell-wall structural carbohydrates reinforcements are part of the defence mechanisms of wheat against Russian wheat aphid (Diuraphis noxia) infestation. Plant Physiology and Biochemistry 179: 168-178. DOI:

Morgan J K, Luzio G A, Ammar E D, Hunter W B, Hall D G, Shatters Jr R G. 2013. Formation of stylet sheaths in āere (in air) from eight species of phytophagous hemipterans from six families (Suborders: Auchenorrhyncha and Sternorrhyncha). PLoS One 8(4): e62444. DOI:

Mou D F, Kundu P, Pingault L, Puri H, Shinde S, Louis J. 2023. Monocot crop-aphid interactions: Plant resilience and aphid adaptation. Current Opinion in Insect Science 101038. DOI:

Naalden D, van Kleeff P J, Dangol S, Mastop M, Corkill R, Hogenhout S A, Schuurink R C, 2021. Spotlight on the roles of whitefly effectors in insect–plant interactions. Frontiers in Plant Science 12: 661141. DOI:

Nalam V, Louis J, Shah J. 2019. Plant defense against aphids, the pest extraordinaire. Plant Science 279: 96-107. DOI:

Nardelli A, Vecchi M, Mandrioli M, Manicardi G C. 2019. The evolutionary history and functional divergence of trehalase (treh) genes in insects. Frontiers in Physiology 10: 62. DOI:

Nicholson S J, Hartson S D, Puterka G J. 2012. Proteomic analysis of secreted saliva from Russian wheat aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Journal of Proteomics 75(7): 2252-2268. DOI:

Nicholson S J, Puterka G J. 2014 Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics 105: 186-203. DOI:

Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Balasubramani V, Natesan S. 2023. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. Insect Biochemistry and Molecular Biology 164: 104060. DOI:

Rao S A, Carolan J C, Wilkinson T L. 2013. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One 8(2): e57413. DOI:

Schatz B, Sauvion N, Kjellberg F, Nel A. 2017. Plant-insect interactions: a palaeontological and an evolutionary perspective. Advances in Botanical Research 81: 1-24. DOI:

Silva-Sanzana C, Estevez J M, Blanco-Herrera F. 2020. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. Journal of Experimental Botany 71(13): 3854-3864. DOI:

Smith C M Clement S L. 2012. Molecular bases of plant resistance to arthropods. Annual Review of Entomology 57: 309-328. DOI:

Stafford-Banks C A, Rotenberg D, Johnson B R, Whitfield A E, Ullman D E. 2014. Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One 9(4): e94447. DOI:

Su Y L, Li J M, Li M, Luan J B, Ye X D, Wang X W, Liu, S S. 2012. Transcriptomic analysis of the salivary glands of an invasive whitefly. PLoS One 7(6): e39303. DOI:

Thorpe P, Cock P J, Bos J. 2016. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genomics 17(1): 1-18. DOI:

Tjallingii W F, Esch T H. 1993. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology 18(3): 317-328. DOI:

Tjallingii W F. 1995. Regulation of phloem sap feeding by aphids. In Regulatory mechanisms in insect feeding. Boston, MA: Springer, US. pp. 190-209. DOI:

Tjallingii W F. 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany 57(4): 739-745. DOI:

Van Bel A J. 2003. The phloem, a miracle of ingenuity. Plant, Cell & Environment 26(1): 125-149. DOI:

Walling L L. 2000. The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19: 195-216. DOI:

Wójcicka A. 2016. Effect of epicuticular waxes from triticale on the feeding behaviour and mortality of the grain aphid, Sitobion avenae (Fabricius)(Hemiptera: Aphididae). Journal of Plant Protection Research 56(1): 39-44. doi:10.1515/jppr-2016-0006. DOI:

Wu Z Z, Qu M Q, Chen M S, Lin J T. 2021. Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian citrus psyllid, Diaphorina citri. Journal of Proteomics 238: 104136. DOI:

Yang Z, Ma L, Francis F, Yang Y, Chen H, Wu H, Chen X. 2018. Proteins identified from saliva and salivary glands of the Chinese gall aphid Schlechtendalia chinensis. Proteomics 18(9): 1700378. DOI:

Yu X. Killiny N. 2018. The secreted salivary proteome of Asian citrus psyllid Diaphorina citri. Physiological Entomology 43(4): 324-333. DOI:

Zhang H, Lin R, Liu Q, Lu J, Qiao G, Huang X. 2023. Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. Frontiers in Plant Science 13: 1098751. DOI:

Zhang Y, Fan J, Sun J, Francis F, Chen J. 2017. Transcriptome analysis of the salivary glands of the grain aphid, Sitobion avenae. Scientific Reports 7(1): 15911. DOI:

Most read articles by the same author(s)