Impacts of Artificial Light at Night on Nocturnal and Diurnal Insect Biology and Diversity

Authors

  • Renee M. Borges Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka

DOI:

https://doi.org/10.55446/IJE.2022.182

Keywords:

ALAN, Biological Clocks, Circadian Rhythms, Light Pollution, Nocturnal Pollination, Bioluminescence, Phototaxis.

Abstract

Artificial light at night (ALAN) is leading to light pollution on local and global scales. Reflected and scattered light contributes to skyglow over cities and large industrial complexes. ALAN is one of the key drivers of insect declines in the Anthropocene era. This is the likely consequence of perturbations in circadian clocks by extension and even abolition of the dark phase of the diel cycle, which affect reproduction and foraging. Bioluminescent insects that use light as sexual signals are severely affected by ALAN and may be under sexual selection for even brighter signals. The phototactic response of insects to light is also causing mortality due to increased predation and altered activity. Mitigatory measures are urgently needed to stem insect declines and to ‘protect’ the role of insects in community ecology. New satellite technology for ALAN measurement is urgently required. There are many research gaps, such as the effect of ALAN on diurnal insects and on interaction networks, that need to be filled.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-03-24

How to Cite

Borges, R. M. (2022). Impacts of Artificial Light at Night on Nocturnal and Diurnal Insect Biology and Diversity. Indian Journal of Entomology, 84(2), 483–492. https://doi.org/10.55446/IJE.2022.182

Issue

Section

Review Articles

References

Alaasam V J, Kernbach M E, Miller C R, Ferguson S M. 2021. The diversity of photosensitivity and its implications for light pollution. Integrative and Comparative Biology. Doi: 10.1093/icb/icab156.

Barentine J C, Walczak K, Gyuk G, Tarr C, Longcore T 2021. A case for a new satellite mission for remote sensing of night lights. Remote Sensing 13: 2294.

Bartlett B C, Stevenson D J. 2016. Analysis of a Precambrian resonance-stabilized day length. Geophysical Research Letters 43: 5716-5724.

Beer K, Helfrich-Förster C. 2020. Model and non-model insects in chronobiology. Frontiers in Behavioral Neuroscience 14: 601676.

Bertolini E, Schubert F K, Zanini D, Sehadová H, Helfrich-Förster C, Menegazzi P. 2019. Life at high latitudes does not require circadian behavioral rhythmicity under constant darkness. Current Biology 29: 3928-3936.

Bloch G, Barnes B M, Gerkema M P, Helm B. 2013. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. Proceedings of the Royal Society B: Biological Sciences 280: 20130019.

Bloch G, Bar-Shai N, Cytter Y, Green R. 2017. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160256.

Borges R M. 2018. Dark matters: Challenges of nocturnal communication between plants and animals in delivery of pollination services. Yale Journal of Biology and Medicine 91: 33-42.

Borges R M, Somanathan H, Kelber A, 2016. Patterns and processes in nocturnal and crepuscular pollination services. Quarterly Review of Biology 91: 389-418.

Boyes D H, Evans D M, Fox R, Parsons M S, Pocock M J. 2021a. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conservation and Diversity 14: 167-187.

Boyes D H, Evans D M, Fox R, Parsons M S, Pocock M J. 2021b. Street lighting has detrimental impacts on local insect populations. Science Advances 7: eabi8322.

Brehm G, Niermann J, Jaimes Nino L M, Enseling D, Jüstel T, Axmacher J C, Warrant E, Fiedler K. 2021. Moths are strongly attracted to ultraviolet and blue radiation. Insect Conservation and Diversity 14: 188-198.

Briolat E S, Gaston K J, Bennie J, Rosenfeld E J, Troscianko J. 2021. Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators. Nature Communications 12: 4163.

Broder E D, Elias D O, Rodríguez R L, Rosenthal G, Seymoure B M, Tinghitella R M. 2021. Evolutionary novelty in communication between the sexes. Biology Letters 17: 20200733.

Carannante D, Blumenstein C S, Hale J D, Arlettaz R. 2021. LED lighting threatens adult aquatic insects: Impact magnitude and distance thresholds. Ecological Solutions and Evidence 2: e12053.

Chen Y R, Wei W L, Tzeng D T, Owens A C, Tang H C, Wu C S, Lin S, Zhong S, Yang E C. 2021. Effects of artificial light at night (ALAN) on gene expression of Aquatica ficta firefly larvae. Environmental Pollution 281: 116944.

Daan S, Aschoff J. 1982. Circadian contributions to survival. In Vertebrate Circadian Systems (Aschoff J, Daan S, Groos G A eds.) (pp. 305-321). Springer, Berlin, Heidelberg.

Dacke M, Baird E, Byrne M, Scholtz C H, Warrant E J. 2013. Dung beetles use the Milky Way for orientation. Current Biology 23: 298-300.

Dacke M, Byrne M J, Scholtz C H, Warrant E J. 2004. Lunar orientation in a beetle. Proceedings of the Royal Society of London. Series B: Biological Sciences 271: 361-365.

Davies T W, Smyth T. 2018. Why artificial light at night should be a focus for global change research in the 21st century. Global Change Biology 24: 872-882.

Deichmann J L, Ampudia Gatty C, Andía Navarro J M, Alonso A, Linares-Palomino R, Longcore T. 2021. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conservation and Diversity 14: 247-259.

Denlinger D L, Hahn D A, Merlin C, Holzapfel C M, Bradshaw W E. 2017. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation? Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160257.

Deora T, Ahmed M A, Brunton B W, Daniel T L. 2021. Learning to feed in the dark: how light level influences feeding in the hawkmoth Manduca sexta. Biology Letters 17: 20210320.

Desouhant E, Gomes E, Mondy N, Amat I. 2019. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomologia Experimentalis et Applicata 167: 37-58.

Dominoni D M, Halfwerk W, Baird E, Buxton R T, Fernández-Juricic E, Fristrup K M, McKenna M F, Mennitt D J, Perkin E K, Seymoure B M, Stoner D C. 2020. Why conservation biology can benefit from sensory ecology. Nature Ecology & Evolution 4: 502-511.

Donelson N C, Sanyal S. 2015. Use of Drosophila in the investigation of sleep disorders. Experimental Neurology 274: 72-79.

Donners M, van Grunsven R H, Groenendijk D, van Langevelde F, Bikker J W, Longcore T, Veenendaal E. 2018. Colors of attraction: Modeling insect flight to light behavior. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 329: 434-440.

Durrant J, Green M P, Jones T M. 2020. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. Insect Science 27: 571-582.

Dyer F C. 1985. Nocturnal orientation by the Asian honey bee, Apis dorsata. Animal Behaviour 33: 769-774.

Eisenbeis G. 2006. Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. In Ecological Consequences of Artificial Night Lighting (Rich C, Longcore T, eds.) (pp. 191-198). Island Press, Washington, DC.

Elgert C, Hopkins J, Kaitala A, Candolin U. 2020. Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. Proceedings of the Royal Society B 287: 20200806.

Elgert C, Lehtonen T K, Kaitala A, Candolin U. 2021. Sexual selection for bright females prevails under light pollution. Current Zoology 67: 329-331.

Elvidge C D, Keith D M, Tuttle B T, Baugh K E. 2010. Spectral identification of lighting type and character. Sensors 10: 3961-3988.

Emerson K J, Bradshaw W E, Holzapfel C M. 2008. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62: 979-983.

Fenske M P, Nguyen L P, Horn E K, Riffell J A, Imaizumi T. 2018. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Scientific Reports 8: 2842.

Foster J, Tocco C, Smolka J, Khaldy L, Baird E, Byrne M J, Nilsson D E, Dacke M. 2021. Light pollution forces a change in dung beetle orientation behavior. Current Biology 31: 3935-3942.

Fraleigh D C, Heitmann J B, Robertson B A. 2021. Ultraviolet polarized light pollution and evolutionary traps for aquatic insects. Animal Behaviour 180: 239-247.

Fyie L R, Gardiner M, Meuti M E. 2021. Artificial light at night alters the seasonal responses of biting mosquitoes. Journal of Insect Physiology 129: 104194.

Garrett J K, Donald P F, Gaston K J. 2020. Skyglow extends into the world’s key biodiversity areas. Animal Conservation 23: 153-159.

Gaston K J. 2019. Nighttime ecology: the “nocturnal problem” revisited. American Naturalist 193: 481-502.

Gaston K J, Ackermann S, Bennie J, Cox DT, Phillips B, Sánchez de Miguel A, Sanders D. 2021. Pervasiveness of biological impacts of artificial light at night. Integrative and Comparative Biology 61: 1098-1110.

Geissmann Q, Beckwith E J, Gilestro G F. 2019. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Science Advances 5: eaau9253.

Giavi S, Blösch S, Schuster G, Knop E. 2020. Artificial light at night can modify ecosystem functioning beyond the lit area. Scientific Reports 10: 11870.

Giavi S, Fontaine C, Knop E. 2021. Impact of artificial light at night on diurnal plant-pollinator interactions. Nature Communications 12: 1690.

Gomes E, Rey B, Débias F, Amat I, Desouhant E. 2021. Dealing with host and food searching in a diurnal parasitoid: consequences of light at night at intra-and trans-generational levels. Insect Conservation and Diversity 14: 235-246.

Green R M, Tingay S, Wang Z Y, Tobin E M. 2002. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiology 129: 576-584.

Grubisic M, van Grunsven R H. 2021. Artificial light at night disrupts species interactions and changes insect communities. Current Opinion in Insect Science 47: 136-141.

Grubisic M, van Grunsven R H, Kyba C, Manfrin A, Hölker, F., 2018. Insect declines and agroecosystems: does light pollution matter? Annals of Applied Biology 173: 180-189.

Hall K, Robert T, Gaston K J, Hempel de Ibarra N. 2021. Onset of morning activity in bumblebee foragers under natural low light conditions. Ecology and Evolution 11: 6536-6545.

Haynes K J, Robertson B A. 2021. A transdisciplinary research agenda for understanding insect responses to ecological light pollution informed by evolutionary trap theory. Current Opinion in Insect Science 45: 91-96.

Helfrich‐Förster C, Bertolini E, Menegazzi P. 2020. Flies as models for circadian clock adaptation to environmental challenges. European Journal of Neuroscience 51: 166-181.

Helm B, Visser M E, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. 2017. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philosophical Transactions of the Royal Society B: Biological Sciences, 372: 20160246.

Horn M, Mitesser O, Hovestadt T, Yoshii T, Rieger D, Helfrich-Förster C. 2019. The circadian clock improves fitness in the fruit fly, Drosophila melanogaster. Frontiers in Physiology 10: 1374.

Hut R A, Paolucci S, Dor R, Kyriacou C P, Daan S. 2013. Latitudinal clines: an evolutionary view on biological rhythms. Proceedings of the Royal Society B: Biological Sciences 280: 20130433.

Jägerbrand A K, Bouroussis C A. 2021. Ecological impact of artificial light at night: Effective strategies and measures to deal with protected species and habitats. Sustainability 13: 5991.

Jander R. 1963. Insect orientation. Annual Review of Entomology 8: 95-114.

Kaiser W, Steiner-Kaiser J. 1983. Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301: 707-709.

Kalinkat G, Grubisic M, Jechow A, van Grunsven R H, Schroer S, Hölker F. 2021. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conservation and Diversity 14: 260-270.

Kobav M B, Eržen M, Bizjak G. 2021. Sustainable exterior lighting for cultural heritage buildings and monuments. Sustainability 13: 10159.

Kobelkova A, Goto S G, Peyton J T, Ikeno T, Lee Jr R E, Denlinger D L. 2015. Continuous activity and no cycling of clock genes in the Antarctic midge during the polar summer. Journal of Insect Physiology 81: 90-96.

Koritala B S, Wager C, Waters J C, Pachucki R, Piccoli B, Feng Y, Scheinfeldt, L B, Shende S M, Park S, Hozier J I, Lalakia P. 2020. Habitat-specific clock variation and its consequence on reproductive fitness. Journal of Biological Rhythms 35: 134-144.

Kronfeld-Schor N, Visser M E, Salis L, van Gils J A. 2017. Chronobiology of interspecific interactions in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160248.

Kühne J L, van Grunsven R H, Jechow A, Hölker F. 2021. Impact of different wavelengths of artificial light at night on phototaxis in aquatic insects. Integrative and Comparative Biology 61: 1182-1190.

Kyba C C, Kuester T, De Miguel A S, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge C D, Gaston K J, Guanter L. 2017. Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances 3: e1701528.

Lee S, Chiang K, Xiong X, Sun C, Anderson S. 2014. The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products. Remote Sensing 6: 12427-12446.

Levin N, Kyba C C, Zhang Q, de Miguel A S, Román M O, Li X, Portnov B A, Molthan A L, Jechow A, Miller S D, Wang Z. 2020. Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment 237: 111443.

Levy K, Wegrzyn Y, Efronny R, Barnea A, Ayali A. 2021. Lifelong exposure to artificial light at night impacts stridulation and locomotion activity patterns in the cricket Gryllus bimaculatus. Proceedings of the Royal Society B 288: 20211626.

Levy O, Dayan T, Porter W P, Kronfeld-Schor N. 2019. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecological Monographs 89: e01334.

Liao Y, Rust M J, 2021. The circadian clock ensures successful DNA replication in cyanobacteria. Proceedings of the National Academy of Sciences USA 118: e2022516118.

Liporoni R, Cordeiro G D, Prado P I, Schlindwein C, Warrant E J, Alves-dos-Santos I. 2020. Light intensity regulates flower visitation in Neotropical nocturnal bees. Scientific Reports 10: 15333.

Longcore T, Rodríguez A, Witherington B, Penniman J F, Herf L, Herf M. 2018. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 329: 511-521.

Mascetti G G. 2021. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 26: 71-93.

McLay L K, Green M P, Jones T M. 2017. Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster. Journal of Insect Physiology 100: 15-20.

McMahon T A, Rohr J R, Bernal X E. 2017. Light and noise pollution interact to disrupt interspecific interactions. Ecology 98: 1290-1299.

Merckx T. Nielsen M E, Heliölä J, Kuussaari M, Pettersson L B, Pöyry J, Tiainen J, Gotthard K, Kivelä S M. 2021. Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proceedings of the National Academy of Sciences USA 118: e2106006118.

Mészáros Á, Kriska G, Egri Á. 2021. Spectral optimization of beacon lights for the protection of night-swarming mayflies. Insect Conservation and Diversity 14: 225-234.

Mills P R, Tomkins S C, Schlangen L J. 2007. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. Journal of Circadian Rhythms 5. Doi: 10.1186/1740-3391-5-2.

Mu H, Li X, Du X, Huang J, Su W, Hu T, Wen Y, Yin P, Han Y, Xue F. 2021. Evaluation of light pollution in global protected areas from 1992 to 2018. Remote Sensing 13: 1849.

Mukai A, Yamaguchi K, Goto S G. 2021. Urban warming and artificial light alter dormancy in the flesh fly. Royal Society Open Science 8: 210866.

Nikhil K L, Sharma V K. 2017. On the origin and implications of circadian timekeeping: An evolutionary perspective. In Biological Timekeeping: Clocks, Rhythms and Behaviour. (Kumar V. ed.) (pp. 81-129). Springer, New Delhi.

Owens A, Lewis S M. 2021. Narrow-spectrum artificial light silences female fireflies (Coleoptera: Lampyridae). Insect Conservation and Diversity14: 199-210.

Owens A C, Cochard P, Durrant J, Farnworth B, Perkin E K, Seymoure B. 2020. Light pollution is a driver of insect declines. Biological Conservation 241: 108259.

Paranjpe D A, Sharma V K. 2005. Evolution of temporal order in living organisms. Journal of Circadian Rhythms 3: 7 Doi: 10.1186/1740-3391-3-7.

Paupy C, Delatte H, Bagny L, Corbel V, Fontenille, D. 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes and Infection 11: 1177-1185.

Pauwels J, Kerbiriou C, Yves B A S, Valet N, Isabelle L E. 2021. Adapting street lighting to limit light pollution’s impacts on bats. Global Ecology and Conservation 28: e01648.

Rattenborg N C, Voirin B, Cruz S M, Tisdale R, Dell’Omo G, Lipp H P, Wikelski M, Vyssotski A L. 2016. Evidence that birds sleep in mid-flight. Nature Communications 7: 12468.

Ren Y, Gao Y, Zhang Q. 2021. Morning and evening alarm of the circadian clock for flower opening times in Hemerocallis. Plant Science 311: 110992.

Robertson B A, Blumstein D T. 2019. How to disarm an evolutionary trap. Conservation Science and Practice 1: e116.

Robertson B A, Campbell D R, Durovich C, Hetterich I, Les J, Horváth G. 2017. The interface of ecological novelty and behavioral context in the formation of ecological traps. Behavioral Ecology 28: 1166-1175.

Robertson B A, Horváth G. 2019. Color polarization vision mediates the strength of an evolutionary trap. Evolutionary Applications 12: 175-186.

Rowse E G, Lewanzik D, Stone E L, Harris S, Jones G. 2016. Dark matters: the effects of artificial lighting on bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (pp. 187-213). CC Voight and T Kingston (eds). Springer, Cham.

Sanders D, Frago E, Kehoe R, Patterson C, Gaston K J. 2021. A meta-analysis of biological impacts of artificial light at night. Nature Ecology & Evolution 5: 74-81.

Sanders D, Kehoe R, Cruse D, van Veen F, Gaston K J. 2018. Low levels of artificial light at night strengthen top-down control in insect food web. Current Biology 28: 2474-2478.

Saravanan S, Kamaladhasan N, Maruthupandian J, Basu M J, Chandrasekaran S. 2020. Beehive removal practices in urban India: Bane of bee’s life? Materials Today: Proceedings. https: //doi.org/10.1016/j.matpr.2020.10.060.

Saunders D S. 2009. Circadian rhythms and the evolution of photoperiodic timing in insects. Physiological Entomology 34: 301-308.

Saunders D. 2020. Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology 117: 328-342.

Somanathan H, Borges R M, Warrant E J, Kelber A. 2008. Nocturnal bees learn landmark colours in starlight. Current Biology 18: R996-R997.

Somanathan H, Krishna S, Jos E M, Gowda V, Kelber A, Borges R M. 2020. Nocturnal bees feed on diurnal leftovers and pay the price of day-night lifestyle transition. Frontiers in Ecology and Evolution 8: 288.

Spalding C, Fischer W W 2019. A shorter Archean day-length biases interpretations of the early Earth’s climate. Earth and Planetary Science Letters 514: 28-36.

Stewart A J. 2021. Impacts of artificial lighting at night on insect conservation. Insect Conservation and Diversity 14: 163-166.

Stracey C M, Wynn B, Robinson S K. 2014. Light pollution allows the northern mockingbird (Mimus polyglottos) to feed nestlings after dark. The Wilson Journal of Ornithology 126: 366-369.

Thompson E K, Cullinan N L, Jones T M, Hopkins G R. 2019. Effects of artificial light at night and male calling on movement patterns and mate location in field crickets. Animal Behaviour 158: 183-191.

Tielens E K, Cimprich P M, Clark B A, DiPilla A M, Kelly J F, Mirkovic D, Strand A I, Zhai M, Stepanian P M. 2021. Nocturnal city lighting elicits a macroscale response from an insect outbreak population. Biology Letters 17: 20200808.

Tierney S M, Friedrich M, Humphreys W F, Jones T M, Warrant E J, Wcislo W T. 2017. Consequences of evolutionary transitions in changing photic environments. Austral Entomology 56: 23-46.

Tobler I, Neuner-Jehle M. 1992. 24-h variation of vigilance in the cockroach Blaberus giganteus. Journal of Sleep Research 1: 231-239.

Toure M W, Young F J, McMillan W O, Montgomery S H. 2020. Heliconiini butterflies can learn time-dependent reward associations. Biology Letters 16: 20200424.

Van den Broeck M, De Cock R, Van Dongen S, Matthysen E. 2021a. Blinded by the light: Artificial light lowers mate attraction success in female glow-worms (Lampyris noctiluca L.). Insects 12: 734.

Van den Broeck M, De Cock R, Van Dongen S, Matthysen E. 2021b. White LED light intensity, but not colour temperature, interferes with mate-finding by glow-worm (Lampyris noctiluca L.) males. Journal of Insect Conservation 25: 339-347.

Van Geffen K G, Groot A T, Van Grunsven R H, Donners M, Berendse F, Veenendaal E M. 2015. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecological Entomology 40: 401-408.

Van Langevelde, F, Braamburg-Annegarn M, Huigens M E, Groendijk R, Poitevin O, van Deijk J R, Ellis W N, van Grunsven R H, de Vos R, Vos R A, Franzén M. 2018. Declines in moth populations stress the need for conserving dark nights. Global Change Biology 24: 925-932.

Van Langevelde F, Van Grunsven R H, Veenendaal E M, Fijen T P. 2017. Artificial night lighting inhibits feeding in moths. Biology Letters 13: 20160874.

Vaz S, Manes S, Gama-Maia D, Silveira L, Mattos G, Paiva P C, Figueiredo M, Lorini M L. 2021. Light pollution is the fastest growing potential threat to firefly conservation in the Atlantic Forest hotspot. Insect Conservation and Diversity 14: 211-224.

Wagner D L, Grames E M, Forister M L, Berenbaum M R, Stopak D. 2021. Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences USA 118: e2023989118.

Walton R E, Sayer C D, Bennion H, Axmacher J C. 2020. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biology Letters 16: 20190877.

Westby K M, Medley K A. 2020. Cold nights, city lights: Artificial light at night reduces photoperiodically induced diapause in urban and rural populations of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 57: 1694-1699.

Wilson A, Seymoure B M, Jaeger S, Milstead B, Payne H, Peria L, Vosbigian R A, Francis C D. 2021. Direct and ambient light pollution alters recruitment for a diurnal plant-pollinator system. Integrative and Comparative Biology Doi: 10.1093/icb/icab010.

Young A M, Kohl P L, Rutschmann B, Steffan-Dewenter I, Brockmann A, Dyer F C. 2021. Temporal and spatial foraging patterns of three Asian honeybee species in Bangalore, India. Apidologie 52: 503-523.

Zielińska-Dabkowska K M, Xavia K, Bobkowska K. 2020. Assessment of citizens’ actions against light pollution with guidelines for future initiatives. Sustainability 12: 4997.