Baseline Susceptibility of Red Spider Mite Tetranychus urticae Koch on Tomato to Selected Acaricides


  • Preethi S Department of Entomology; 4Department of Post Harvest Management, College of Horticulture, Bengaluru 560 065, Karnataka
  • Aswathnarayana Reddy Department of Entomology, College of Horticulture, Kolar
  • Jayappa J Department of Entomology; 4Department of Post Harvest Management, College of Horticulture, Bengaluru 560 065, Karnataka
  • Manjunatha Reddy T. B. Department of Plant Pathalogy, College of Horticulture, Kolar 560065, Karnataka
  • Thulsiram K Department of Entomology, College of Horticulture, Kolar
  • Sadanada G. K. University of Horticultural Sciences, Bagalkote 587 104, Karnataka



Acaricides, bioassay, LC50, baseline, susceptibility, Tetranychus urticae, mortality, fiducial limit, mulberry leaves, resistance, fenazaquin, propargite, chlorfenapyr


This study was conducted to establish the baseline susceptibility data for Tetranychus urticae Koch, successfully maintained under laboratory conditions without exposure to acaricides. The leaf dip method of bioassay was used to establish the baseline susceptibility. Toxicity (LC50 value) varied across the major acaricides i.e., chlorfenapyr 10SC, propargite 57EC, fenazaquin 10EC, abamectin 3EC, spiromesifen 22.9SC and dicofol 18.5EC. Maximum toxicity was recorded for fenazaquin 10EC (0.08 ppm), followed by propargite 57EC, and the lowest was recorded with chlorfenapyr 10 SC (0.16 ppm). The LC50 values for all acaricides tested were lower than concentrations used as recommended field doses. This baseline data might be useful in monitoring and in the management of acaricide resistance in T. urticae.


Download data is not yet available.


Metrics Loading ...




How to Cite

S, P. ., Reddy, A., J, J., T. B., M. R., K, T., & G. K., S. (2023). Baseline Susceptibility of Red Spider Mite <i> Tetranychus urticae</i> Koch on Tomato to Selected Acaricides. Indian Journal of Entomology, 85(3), 647–650.



Research Communications


Abbott W S. 1925, A method of computing the effectiveness of an insecticide. Joural Econ. Entomol 18: 265-267.

Badieinia F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T. 2020. Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop protection 134(2): 105166.

Beers E H, Riedl H, Dunley, J E. 1998. Resistance to abamectin and reversion to susceptibility to fenbutatin oxide in spider mite (Acari: Tetranychidae) populations in the Pacific Northwest. Journal of Economical. Entomology 91(2): 352-360.

Bolland H R, Gutierrez J, Flechtmann C H. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Brill 303-387.

Finney D J. 1971. Probit Analysis. Third edition. S. Chand & Co. Ltd. New Delhi. 333.

Georghiou G P, Lagunges-Tejeda A. 1991. The occurrence of resistance to pesticide in arthropods: an index of cases reported through 1989. FAO, Rome.

Kaur P, Bhullar M B. 2019. Acaricide resistance in Tetranychus urticae on cucumber (Cucumis sativus) under protected cultivation. Indian Journal of Agricutural Science. 89(9): 1462-5.

Kumar R, Manmeet B B. 2018. Status of acaricides resistance in fieldcollected areas of Punjab. Indian Journal of Entomology and Zoological Studies 6(1): 328-332.

Kumar S. 2011. Advances in horticulture biotechnology-regeneration systems. 2(1): 1-12.

Leeuwen V T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochemistry and Molecular Biology 40(8): 563-572.

Migeon A, Nouguier E, Dorkeld F. 2010. Spider Mites Web: a comprehensive database for the Tetranychidae. Trends in acarology. 557-560. Mill. in the eastern dry zone of Karnataka. Insect Environment 10(1): 40-42.

Mohin M, Rajashekarappa K, Sharanabasappa. 2021. Establishment of baseline values for susceptibility of Tetranychus urticae Koch to major acaricides over successive generations. Journal of Entomology and Zoological Studies 9(1): 429-432.

Naveena K, Shanthi M, Chinniah C, Jayaraj J, Ramasubramanian T, Mini M L, Renuka R. 2022. Acaricide Resistance in Field-Collected Two-Spotted Spider Mite Tetranychus urticae Koch. Indian Journal of Entomology 84(1): 1-5.

Noor N S, Srinivasa N. 2019. Resistance of two-spotted mite,Tetranychus urticae Koch to major acaricide and its consequences on biological characteristics of mites. Mysore Journal of Agriculture Sciences 52(2): 179-185.

Noor N S, Srinivasa N. 2020. Determining baseline susceptibility ofTetranychus urticae Koch (Acari: Tetranychidae) to acaricides by generation method. Journal of Entomology and Zoological Studies 8(3): 1416-1423.

Patil C M, Udikeri S S, Karabhantanal S S. 2019. Acaricide resistance in Tetranychus urticaeKoch populations of grapevine orchard in North Karnataka, India. Journal of Agriculture and Horticulture Research 2(1): 1-4

Ramasubramanian T. 2005. Acaricide resistance in Tetranychus urticae Koch (Acari: Tetranychidae)-global scenario. Journal of Entomology 2: 33-39.

Roy S, Mukhopadhyay A, Gurusubramanian G. 2010. Baseline susceptibility of Oligonychus coffeae (Acarina: Tetranychidae) to acaricides in North Bengal tea plantations, India. International Journal of Acarology 36(5): 357-362.

Roy S. 2019. Detection and biochemical characterization of acaricide resistance in field populations of tea red spider mite, Oligonychus coffeae (Acari: Tetranychidae), in Assam tea plantation of India. International Journal of Acarology 45(8): 470-476.

Sharma R K, Bhullar M B. 2018. Status of acaricide resistance in field-collected two-spotted spider mite,Tetranychus urticaeKoch from vegetable growing areas of Punjab, India. Journal of Entomology and Zoology Studies 6(1): 328-332.

Shukla A, Radadia G G, Hadiya G D. 2017. Estimation of loss due to two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) infesting brinjal. International Journal of Current Microbiology and Applied Sciences 6(9): 2145-2150.

Singh J, Raghuraman M. 2011. Emerging scenario of important mite pests in north India. Zoosymposia 6(1): 170-179.

Sparks T C, Crossthwaite A J, Nauen R, Banba S, Cordova D, Earley F, Ebbinghaus-Kintscher U, Fujioka S, Hirao A, Karmon D, Kennedy R. 2020. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-a tool for resistance management. Pesticide Biochemistry and Physiology 167(2): 104587.

Sridhar V, Rani J B. 2003. Relative susceptibility in open and greenhouse populations of two-spotted spider mite, Tetranychus urticae Koch on rose to dicofol. Resistance Pest Managment News 12(1): 83.

Veres A, Wyckhuys K A, Kiss J, Toth F, Burgio G, Pons X, Avilla C, Vidal, S, Razinger J, Bazok R, Matyjaszczyk E. 2020. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environmental Science and Pollution Research, 27(1): 29867-29899.