Gut Symbionts: Hidden Players of Pesticide Resistance in Insects

Authors

  • Chaitra H. S. Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi
  • Vinay K. Kalia Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi

DOI:

https://doi.org/10.55446/IJE.2021.70

Keywords:

Insects, Gut Symbionts, Interaction, Insecticide Resistance, Toxicity, Cross-Resistance, Insecticide Degradation.

Abstract

Development of resistance to insecticides in insects is a global concern. Understanding the mechanisms is critical for effective plant protection and human health. Challenge in dealing the matter is that, resistance can occur via direct organism response (metabolic, physiological, and target-site changes) or via gut microbiome. Insects are constantly evolving like any other organisms; they are adopting various measures to overcome the chemicals sprayed to control them. Increasing evidence suggest that the gut microbiome can promote pesticide resistance in pests. Possible mechanisms by which gut bacteria play role in insecticide resistance are, direct acquisition of pesticide degrading microbes from the environment, difference in gut bacterial composition and diversity, difference in xenobiotic degrading enzymes and presence of microbial xenobiotic degradation pathways and cross-acclimatization to related insecticides.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-12-28

How to Cite

H. S., C. ., & Kalia, V. K. (2021). Gut Symbionts: Hidden Players of Pesticide Resistance in Insects. Indian Journal of Entomology, 84(4), 997–1002. https://doi.org/10.55446/IJE.2021.70

Issue

Section

Review Articles

References

Almeida L G, de Moraes L A B, de Trigo J R, Omoto C, Cônsoli F L. 2017. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLOS One 12(3): e0174754.

Broderick N A, Raffa K F, Handelsman J. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences 103(41): 15196-15199.

Broderick N A, Raffa K F, Handelsman J. 2010. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiology 10(1): 129.

Broderick N A, Robinson C J, McMahon M D, Holt J, Handelsman J, Raffa K F. 2009. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biology 7(1): 11.

Caccia S, Di I, La A, Marinelli A, Varricchio P, Franzetti E. 2016. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences 113(34): 9486-9491.

Chaitra H S, Kalia V K. 2020. Influence of midgut bacteria on toxicity of Bacillus thuringiensis to pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Journal of Entomology and Zoology Studies 8(6): 1758-1763.

Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. 2017. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5(1): 13.

Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. 2018. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Scientific Reports 8: 2084.

Denholm I, Rowland M W. 1992. Tactics for managing pesticide resistance in arthropods: theory and practice. Annual Review of Entomology 37(1): 91-112.

Devine G. 2009. Global Pesticide Resistance in Arthropods - By M.E. Whalon, D. Mota-Sanchez and R.M. Hollingworth. Entomologia Experimentalis et Applicata 131(1): 106-106.

Dillon R J, Dillon V M. 2004. The Gut Bacteria of Insects: Nonpathogenic Interactions. Annual Review of Entomology 49(1): 71-92.

Douglas A E, Minto L B, Wilkinson T L. 2001. Quantifying nutrient production by the microbial symbionts in an aphid. Journal of Experimental Biology 204(2): 349-358.

Douglas A E. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology 60: 17.

Febvay G, Rahbé Y, Rynkiewicz M, Guillaud J, Bonnot G. 1999. Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets. Journal of Experimental Biology 202(19): 2639-2652.

Gadad H, Vastrad A S. 2016. Gut bacteria mediated insecticide resistance in Spodoptera litura (Fab.). Journal of Experimental Zoology, India 19(2): 1099-1102.

Genta F A, Dillon R J, Terra W R, Ferreira C. 2006. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. Journal of Insect Physiology 52(6): 593-601.

Ghanim M, Kontsedalov S. 2009. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Management Science: formerly Pesticide Science 65(9): 939-942.

Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim G H, Saravanan V S, Sa T. 2007. Cultivable bacteria associated with larval gut of prothiofos resistant, prothiofos susceptible and field caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. Journal of Applied Microbiology 103(6): 2664-2675.

Jing T Z, Qi F H, Wang Z Y. 2020. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 8(1): 1-20.

Johnston P R, Crickmore N. 2009. Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the Tobacco Hornworm, Manduca sexta. Applied and Environmental Microbiology 75(15): 5094-5099.

Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences 109(22): 8618-8622.

Kikuchi Y, Hosokawa T, Fukatsu T. 2011. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME Journal 5: 446-460.

Kikuchi Y, Hosokawa T, Fukatsu T. 2011. Specific developmental window for establishment of an insect-microbe gut symbiosis. Applied and Environmental Microbiology 77(12): 4075-4081.

Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. 2008. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science 64: 789-792.

Li S, De Mandal S, Xu X, Jin F. 2020. The tripartite interaction of host immunity- Bacillus thuringiensis infection- gut microbiota. Toxins 12(8): 514.

Lin X L, Pan Q J. Tian H G, Douglas A E, Liu T X. 2015. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods, Insect Science 22: 375-385.

Malathi V M, More R P, Anandham R, Gracy G R, Mohan M, Venkatesan T, Samaddar S, Jalali S K, Sa T. 2018. Gut bacterial diversity of insecticide-susceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and elucidation of their putative functional roles. Journal of Microbiology and Biotechnology 28(6): 976-986.

Oliver K M, Moran N A, Hunter M S. 2005. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences 102(36): 12795-12800.

Paramasiva I, Sharma H C, Krishnayya P V. 2014. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiology 14(1): 200.

Ramya S L, Venkatesan T, Murthy K S, Jalali S K, Verghese A. 2016. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Environmental Microbiology 47: 327-336.

Raymond B, Johnston P R, Wright D J, Ellis R J, Crickmore N, Bonsall M B. 2009. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environmental Microbiology 11(10): 2556-2563.

Roush R T, McKenzie J A. 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32: 361-380.

Salem H, Bauer E, Strauss A S, Vogel H, Marz M, Kaltenpoth M. 2014. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proceedings of the Royal Society B: Biological Sciences 281(1796): 20141838.

Schaefer C (Ed.), Panizzi A (Ed.). 2000. Heteroptera of economic importance. Boca Raton: CRC Press.

Shan Y, Shu C, Crickmore N, Liu C, Xiang W, Song F, Zhang J. 2014. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication. Environmental Entomology 43(3): 612-616.

van Frankenhuyzen K, Liu Y, Tonon A. 2010. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. Journal of Invertebrate Pathology 103(2): 124-131.

Visweshwar R, Sharma H C, Akbar S M D, Sreeramulu K. 2015. Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Applied Biochemistry and Biotechnology 177(8): 1621-1637.

Whalon M E, Mota-Sanchez D, Hollingworth R M. 2008. Global Pesticide Resistance in Arthropods. Centre Agric Biosci Intl, Oxfordshire, UK.

Wigglesworth V A. 1929. Theory of Tracheal Respiration in Insects. Nature 124: 986-987.

Xia X, Sun B, Gurr G M, Vasseur L, Xue M, You M. 2018. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology 9:25.

Xia X, Zheng D, Zhong H, Qin B, Gurr G M, Vasseur L, Lin H, Bai J, He W, You M. 2013. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 8(7): p.e68852.