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ABSTRACT

Insect resistant crop plants form the core component of Integrated Pest Management (IPM) due to their ability 
to reduce the crop losses and associated insecticide costs in addition to protecting the environment. In this review, 
various types of resistance being cited, resistance mechanisms and causal factors responsible with examples were 
discussed. Traits associated with resistance, genetics and inheritance patterns were listed. Several sources of resistance 
including crop varieties, wild relatives, QTLs identified and mapped for major insect pests so far were elaborated 
along with steps in the development of a resistant variety. Advantages and limitations of insect resistance were also 
discussed with emphasis on the development of insect biotypes. Novel strategies in molecular approaches like marker 
assisted selection, gene pyramiding, RNAi approach along with genome editing strategies were emphasized. The 
development of insect resistant crops is a sustainable way to manage pests and hence emphasis need to be given to 
breed trait specific insect resistant cultivars utilizing the novel approaches in the future breeding programs. 
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Global food production must increase dramatically 
by 2050 to feed projected population of 9.3 billion 
(Audsley et al., 2009). Presently, application of 
chemical pesticides is the widely prevalent strategy to 
reduce crop losses caused by insect pests and diseases 
and is valued at over US$ 250 billion annually. 
Indiscriminate application of the toxic chemicals 
has led to the development of resistance in target 
pests, resurgence of non-target pests and serious 
environmental hazards. Host plant resistance (HPR), 
plays a vital role in reducing crop losses and protecting 
the environment in most of the field crops. Growing 
insect resistant varieties does not need any extra skill 
for farmers and requires no additional cash investment. 
Considerable progress has been made in developing 
crop cultivars with resistance to the major insect pests 
in different field crops.

Insect resistant crop plants continue to be the 
foundation of food production due to their ability to 
increase yields and decrease insecticide costs (Wiseman 
and Webster, 1999). Earlier, farmers recognized plants 
that were able to withstand insect pest damage and 
adverse environmental conditions. The plants that 
were susceptible to pests were generally eliminated, 
and only resistant plants survived leading to the 
natural selection of plants with an ability to withstand 

pest damage. The first resistant wheat cultivar (cv. 
Underhill) against Mayetiola destructor was grown in 
New York in 1780’s (Panda and Khush, 1985). Breeding 
for resistance to insect pests commenced formally 
after the rediscovery of Mendel’s law of heredity in 
1900 and evolved as a field of research with the work 
of Painter (1951) during 20th century. Over the past 
few decades, insect resistant varieties were developed 
by collaborative research between plant breeders and 
entomologists, and have contributed significantly to 
major yield increases in maize, rice and wheat (Smith, 
2005; Brummer et al., 2011).

A number of indigenous cultivars and landraces 
selected by farmers hoarded genes conferring resistance 
to pests. The best examples of this process are brown 
planthopper resistant landrace Salkathi (Mohanty 
et al., 2017) and Rathuheenathi (Padmavathi et al., 
2007), shoot fly resistant sorghums (landrace variety 
Maldandi) cultivated during the postrainy season 
in India, and head bug resistant guinea sorghums 
cultivated in West Africa (Sharma, 1993). There are 
many such examples of existence of plants resistant 
to pests in landraces and wild species of various crops. 
Host plant resistance (HPR), therefore, forms the 
backbone of any pest management strategy. 
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Using the conventional and molecular tools, 
resistance genes to major insect pests have been 
mapped, and some of these resistance genes have been, 
and are being transferred into agronomically elite and 
high-yielding varieties. Genes from the wild relatives 
of crops, and novel genes, such as those from Bacillus 
thuringiensis are also introgressed into different crops 
to make plant resistance an effective method in pest 
management. Development of pest-resistant varieties 
and their utilization will not only cause a major 
reduction in pesticide use and slowdown the rate of 
development of resistance to pesticides. Growing a 
resistant variety also increases activity of beneficial 
microorganisms and reduces pesticide residues in food 
and food products in some crops with a much safer 
environment to live. 

Host plant resistance includes those characteristics 
of a plant to avoid, tolerate or recover from the attack 
of insects under conditions that would cause greater 
injury to other plants of the same species. Painter 
(1951) defined plant resistance as the relative amount 
of heritable qualities possessed by a plant which 
influence the ultimate degree of damage done by 
the insect. According to Kogan (1998), resistance to 
insects is the heritable property that enables a plant 
to restrain the growth of insect populations or to 
recover from injury caused by populations that were 
not restrained. Smith (2005) described host-plant 
resistance as sum of the constitutive, genetically 
inherited qualities that result in a plant of one cultivar 
or species being less damaged than a susceptible plant 
lacking these qualities. According to Panda and Khush 
(1995), plant resistance has four major features by 
which resistance can be assessed, viz., i) Resistance 
is heritable and controlled by one or more genes, ii) 
Resistance is relative and measured by comparison 
with a susceptible cultivar of the same plant species, iii) 
Resistance is measurable by standard scoring systems 
and iv) Resistance is variable and can be modified by 
the biotic and abiotic components of the environment. 

Based on these characteristics, resistance can 
be classified genetically and epidemiologically. 
Genetically, there are three main types of resistance 

i.e, monogenic, oligogenic and polygenic. Monogenic 
resistance is controlled by a single major gene. 
Oligogenic resistance is controlled by several genes. 
Polygenic resistance is the result of many genes and 
is more difficult to incorporate into a plant breeding 
program. In epidemiological terms, resistance is 
classified as horizontal or durable resistance, with 
a long lasting effect and effective against all genetic 
variations of a particular pest and vertical or transient 
resistance that is effective for a short period and 
against certain variants only. Qualitative resistance 
applies when the frequency distribution of resistant 
and susceptible plants in a population is discontinuous 
and the plants are easily categorized as either resistant 
or susceptible. Quantitative resistance is used when 
a crop shows continuous gradation between resistant 
and susceptible plants within a population. 

RESISTANCE MECHANISMS AND CAUSAL FACTORS

The most widely accepted mechanisms of insect 
resistance were given by Painter (1951) which includes

i) Antixenosis (Non-preference)
ii) Antibiosis
iii) Tolerance

Antixenosis refers to plant characteristics 
that deters insects away from a particular host 
and can be expressed in a cultivar either through 
morphological characters or allelochemicals. It 
affects the behavior of an insect in such a way it 
makes the plant unattractive for oviposition, feeding 
and shelter. Absence of physicochemical stimuli 
that are involved in selection of host plant or 
presence of repellents, deterrents, and antifeedants 
contribute to the antixenosis mechanism of 
resistance. Allelochemic non-preference is common 
among plants causing them totally rejected by 
insects. For example, Brown planthopper resistance 
in Mudgo variety is mainly due to the absence of 
asparagine resulting in gustatory non-preference to 
feeding (Sogawa and Pathak, 1970). Morphological 
non-preference is mostly due to plant structural 
characteristics which disrupt the normal behavior of 
an insect (Table 1). 
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Antibiosis is the adverse effect the plant exerts 
on the growth and survival of the insect. It affects 
the biology of the insect resulting in increased 
mortality or reduced longevity and fecundity of 
the insect leading to reduced pest abundance and 
damage to the resistant plants. Allelochemicals are 
generally involved in antibiosis. Best known examples 
include DIBOA in maize and gossypol in cotton  
(Table 1). Tolerance refers to the ability of the plant to 
withstand or recover from the damage by the insect. 
It is a plant response to the insect damage. Many 
factors are involved in tolerance leading to increased 
plant vigour, compensatory growth in plants, wound 
healing etc. In the crop varieties with a combination 
of three mechanisms of resistance, tolerance increases 
yield stability by providing at least a moderate level 
of resistance, when vertical genes providing a high 
level of resistance through antixenosis and antibiosis 
succumb to the new biotype. 

The insect resistance in host crop may be due 
to the morphological, biochemical or physiological 
characteristics (Fig.1). Anatomical and 
physiological defense mechanisms of plants play a 
major role in defending themselves against insect 
attack. Anatomical defense mechanisms include 
specialized morphological structures produced  
by plants, while physiological mechanisms include  
secondary metabolism activated in plants  
(Fig. 1). The defensive leaf structures of the plant 
safeguards itself by the development of dense 
trichomes, spines, setae, as well as leafy toughness, 
cuticular thickness, and release of waxy epicuticles 
(Peterson et al., 2016). Trichomes, negatively 
influences the ovipositional sites and feeding 
behavior of insect pests and obstruct the movement 
over the plant surface (Sánchez and Morquecho-
Contreras, 2017). Trichomes tend to hinder sap-
feeding or leaf-chewing insects in some grasses 
(Hartley et al., 2015). Pigeonpea genotypes (ICPH 
3461, ICPH 3762, BSMR 853, ICPL 332 WR, ICPH 
2740, and ENT 11) with better pod wall thickness 

and high non-glandular trichome density showed 
improved tolerance to pod borer complex (Ambidi 
et al., 2021). 

PHENOTYPING FOR RESISTANCE TO INSECT PESTS

The first step in any breeding program for the 
development of insect resistant varieties is to identify 
sources of resistance through evaluation using reliable 
phenotyping methodologies. Plant phenotyping for 
insect pests includes quantifying plant traits that contain 
insect infestations. For pests which are easy to mass 
rear, usually those with several generations/year and 
with no obligatory diapause, phenotyping techniques 
at seedling stage in laboratories and/or green-houses 
have been developed and used successfully. For pests 
with obligatory diapause and one generation/year on a 
host, the development and use of molecular markers 
to breed for resistance becomes a necessity. Once 
a marker is identified, breeders would use it in their 
breeding programs to screen their germplasm and 
make selection for resistance to these types of pests. A 
number of phenotyping methods have been developed, 
standardized and are being used for screening for 
resistance against major insect pests in various field 
crops (Kavitha and Reddy, 2012; IRRI, 2013; Sharma 
et al., 1992; Padmavathi et al., 2017). Most of these 
phenotyping techniques are laborious and time 
consuming relying mostly on the visual estimations of 
damage and has become a major bottleneck in breeding 

Fig. 1. Insect resistance mechanisms and causal factors in 
plants
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Table 1. Traits associated with insect resistance in crop cultivars

Trait Crop - Pest Character Reference
Morphological 

factors
Rice - BPH Surface waxes Woodhead and Padgham, 

1988
Rice - Stem borers Small lumen, tight leaf-sheaths, tough 

tissues, ridged stems and high silica content 
& stem diameter, leaf number, flag leaf 
length and width, second leaf length and 
width and life duration of rice plant

Pathak, 1973;
Shahjahan and Hossain, 
2003

Rice - Leaf folder Leaf length and leaf width Javvaji et al., 2021
Sorghum - Shoot fly Leaf glossiness, plant vigor, trichomes, and 

leaf-sheath pigmentation
Mohammed et al., 2016; 
Arora et al., 2021

Sorghum - Aphid Greater plant height and greater distance 
between two leaves and the presence of 
waxy lamina

Mote and Shahane, 1994

Sorghum - Midge Long glumes that do not open during 
anthesis, fast ovary growth in sorghum 
panicle, short floral parts, short glume length, 
short ovary girth

Rosetto et al., 1975
Jotwani, 1978

Pearl millet - Head miner Presence of involucral bristles, their density, 
length, and orientation

Youm and Kumar, 1995

Sweet corn - Ear worm Husk tightness Wiseman and Davis, 1990
Cotton - Jassid Greater hair density 

on the mid rib and 
leaf lamina

Singh et al., 1972; 
Agarwal et al., 1987

Cotton - Pink bollworm High plant hair density Wilson et al., 1980
Cotton - Boll weevil Fregobract Jenkins and Parrot, 1971
Wheat - Hessian fly Pubescence Roberts et al., 1979
Wheat - Stem sawfly Solid stem Szczepaniec et al., 2015
Chickpea - Aphids Trichomes Edwards, 2001
Cowpea - Legume pod borer long peduncles, podsheld over the plant 

canopy and at a wider angle
Singh, 1978

Cowpea - Pod sucking bug Trichomes on pods Boukar et al., 2020
Pigeon pea - Helicoverpa High density of 

non-glandular trichomes 
on pods

Sharma et al., 2009

Soybean - Beanflies, 
whiteflies & pod borers

Trichome length Chiang and Norris, 1983; 
Lam and Pedigo 2002

Groundnut - H. armigera, S. 
litura, and jassids

Stem thickness, leaflet shape, leaf length, 
leaf hairiness, standard petal length, stipule, 
and peg length

Sharma et al., 2003

Biochemical 
factors

Rice - BPH Total sugars, phenols and protein content Udaysree et al., 2020

Rice - Stem borers, Leaf 
folders

Higher amount of phenolic compounds and 
high silica, 

Israel and Kalode, 1966
Javvaji et al., 2021

Rice - Stem borers Low Oryzanone (p-methylacetophenone Sadasivam and 
Thayumanavan, 2003

Rice - Gall midge Relative levels of free aminoacids, phenols 
and soluble sugars

Amudhan et al., 1999; 
Vidyachandra et al., 1981

Rice - Leaf folder Low nitrogen and high silica Han et al., 2015; Javvaji et 
al., 2021
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Trait Crop - Pest Character Reference
Sorghum - Shoot fly Irregularly shaped silica bodies in the 4th to 

7th leaf sheaths
Ponnaiya, 1951

Sorghum - Stem borer Surface waxes on the leaf and stem, high 
silica content, low sugar content, aminoacids, 
total sugars, tannins, total phenols, neutral 
detergent fibre, acid detergent fibre, lignin

Kalode and Pant, 1967
Jotwani, 1976

Maize - Stem borers DIMBOA Butron et al., 2010
Cotton - Whitefly and thrips Gossypol glands on mid rib Ahmed et al., 1987
Cotton - Pink bollworm High Gossypol Ramalho et al., 1984
Cowpea - H. armigera High crude fibre and non reducing sugars 

with low per cent of starch, high per cent of 
cellulose, hemi celluloses and lignin in the 
pod wall.

Chhabra et al., 1990

Cowpea - Aphid Low sucrose levels and high levels of 
kaempferol and quercetin (aglycones of 
phenolic compounds

Togola et al., 2020
 

Chickpea - H. armigera High amount of malic acid Rembold et al., 1990
Pigeon pea - Podborer 
complex

High phenols, tannins, and flavonoids 
content

Ambidi et al., 2021

Pigeon pea - H. armigera high density of non-glandular trichomes on 
pods

Romeis et al., 1999

programs. However, in recent times, robust systems 
are being developed that can accurately screen many 
germplasm lines in a high-throughput manner (Goggin 
et al., 2015). 

Considerable progress has been made in 
identification and utilization of crop germplasm for 
resistance to insect pests. Several sources of resistance 
to major insect pests and diseases have been identified, 
and the resistance transferred into high yielding 
varieties in different crops. Insect resistant cultivars 
have been developed in several crops, and released 
for cultivation by the farmers in India (Mahajan et al., 
1997, Sharma and Ortiz, 2002). Host plant resistance 
has been a major component for minimizing losses due 
to insect pests in sorghum, chickpea and pigeonpea 
(Sharma and Ortiz, 2002). Development and release 
of midge-resistant cultivars in sorghum have been 
the major achievements towards developing crop 
cultivars with resistance to insect pests. Cultivars with 
moderate levels of resistance to shoot fly in sorghum, 
Helicoverpa in chickpea and pigeonpea have also been 
developed. 

GENETICS AND INHERITANCE OF 
RESISTANCE

Genetically, there are three main types of resistance 
i.e, monogenic, oligogenic and polygenic. Monogenic 
resistance is controlled by a single major gene. 
Oligogenic resistance is controlled by few genes. 
Polygenic resistance is the result of many genes and 
is more difficult to incorporate into a plant breeding 
program. 

A single recessive gene governs nonpreference for 
oviposition and two duplicate recessive genes govern 
the resistance to deadheart formation in sorghum by 
shoot fly (Sharma and Rana, 1985). The presence of 
trichomes on the abaxial surface of the leaf in sorghum 
is controlled by a single recessive gene and appears 
to be a highly heritable trait. Glossy leaves in sorghm 
are also governed by a single recessive gene (Table 2). 
Indirect selection through the component traits such 
as glossiness, and seedling height which are under 
the control of additive genes would be effective for 
improving shoot fly resistance in sorghum (Aruna 
et al., 2011). Resistance to stemborer in sorghum is 
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additive and partially dominant over susceptibility 
(Pathak, 1985; Sharma et al., 2007). Inheritance of 
sorghum resistance to greenbug biotypes is relatively 
simple, while resistance to biotype C was determined 
to be dominant or incompletely dominant. Resistance 
derived from Sorghum virgatum (Hack.) Stapf was 
reported to be conferred by dominant genes at more 
than one locus (Hackerott et al., 1969). Resistance to 
head bugs showed dominance to partial dominance 
type of gene action and under the control of both 
additive and non-additive gene effects (Sharma et al., 
2000). 

SOURCES OF RESISTANCE FOR INSECT PESTS

Crop varieties resistant to insect pests

A number of insect resistant sources from cultivated 
varieties were identified for various insect pests in 
different crops (Table 3). Genetic diversity is available 
in the wheat genetic resources for resistance to the 
most economically important insect pests, Hessian 
fly, Russian wheat aphid and green bug. Many R 
genes including 37 genes for Hessian fly, 11 genes for 

Russian wheat aphid and 15 genes for green bug have 
been identified. Some of these have been deployed 
singly or in combination in the breeding programs 
to develop high yielding varieties with resistance to 
insects (Wuletaw et al., 2021). Three wheat genes (H5, 
H11, H13) were identified to be effective against the 
Hessian fly (EI Bouhssini et al., 1988). Screening of 
wild relatives of wheat showed large number of resistant 
accessions of Aegilops taucshii and very limited 
sources of resistance in wild Triticum (EI Bouhssini 
et al., 1998; EI Bouhssini et al., 2008). Several 
sources of resistance were also identified in primary 
synthetic hexaploid wheat lines for the Moroccan 
and the Syrian hessian fly biotypes (EI Bouhssini et 
al., 2013). Five wheat lines viz., Ferrugineum 205/ 
Frunsenskaya 60, Lutescencs 42/ Odesskaya krasno- 
kolosaya, Odesskaya, Erythrospermum 13 / Obriy 
and Frunsenskaya60/Tardo/Intensivnaya/ Eryt were 
identified as resistant to cereal leaf beetle. These lines 
expressed both antibiosis and antixenosis (Joukhadar 
et al., 2013).

Table 2. Inheritance of resistance 

Crop Insect Trait Inheritance Reference

Rice Brown 
planthopper

Damage score 
and resistance 
related traits

Of the 41 genes identified for 
resistnace to BPH, 31 genes are 
dominant and 10 genes are recessive

Jena and Kim, 2010;  
Akanksha et al., 2019;
Wang et al., 2022

Rice Gall midge Gall formation Of the 12 genes identified, 10 genes 
are dominant and 2 genes are recessive

Kumar et al., 2005, Sama et al., 
2012; Bentur et al., 2016;
Leelagud et al., 2020

Rice White-backed 
planthopper

Damage score Of the 15 genes identified, 11 genes 
are dominant and 4 genes are recessive 

Padmavathi et al., 2017;
Ramesh et al., 2014;
Fujita et al., 2013 

Sorghum Shoot fly Glossiness Simple Agarwal and House, 1982
Single recessive Tarumoto, 1980

Additive and non-additive genes
Non-additive genes

Agarawal and Abraham, 1985
Aruna and Padmaja, 2009

Trichome 
density

Additive and non-additive genes Halalli et al., 1982; Aruna and 
Padmaja, 2009

Seedling height Additive
Non-additive

Sharma et al., 1977; Borikar and 
Chopde,1982; Halalli et al., 1983

Deadhearts Additive and non-additive 
components of heritable variation

Halalli et al., 1982; Biradar and 
Borikar, 1985; Dabholkar et al., 
1989; Elbadavi et al., 1997
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Crop Insect Trait Inheritance Reference

Non-additive Aruna and Padmaja, 2009

Oviposition non-
preference

Additive and non-additive Halalli et al., 1982; Dabholkar 
et al., 1989; Agrawal and 
Abraham, 1985

Recovery 
resistance

Additive and non-additive Biradar et al., 1986

Additive Sharma et al., 1977; Starks et al., 
1970; Borikar and Chopde, 1981a, 
1982

Tillering Non-additive Borikar and Chopde, 1981b; 1982; 
and Sharma et al., 1977

Significant epistatic effects Starks et al., 1970

Sorghum Stemborer Foliar damage
Deadheart
Stem tunneling
Number of 
nodes
Panicle initiation

Additive

Additive

Nour and Ali, 1998

Sharma et al., 2007

Sorghum Greenbug Recovery score Single incompletely dominant
gene

Weibel et al., 1972

Stalk length Dominant Johnson et al., 1981

 Biotype C Incompletely dominant and 
controlled by two genes

Tuinstra et al., 2001

Sorghum Aphid Biotype E
Biotype I

Monogenic and controlled by a single 
dominant gene

Hsieh and Pi, 1982;
Pi and Hsieh, 1982; Tan et al.,  
1985

Sorghum Midge Recessive trait and is controlled by 
two or more loci
Additive and nonadditive genes

Boozaya-Angoon et al., 1984; 
Rossetto and Igue, 1983
Agarwal and Abraham, 1985

Sorghum Headbug Additive gene action Widstrom et al., 1984;  
Sharma et al., 1996; 2000

Maize Spotted 
stemborer

Leaf feeding, 
dead hearts and 
stem tunneling

Additive and non-additive gene 
effects

Pathak, 1991

Maize Pink 
stemborer

Leaf and stem 
injury rating

Additive x additive (I) followed by 
dominance (D) and additive (A) gene 
effects

Sekhar et al., 2015

Maize Maize weevil Grain weight 
loss, progeny 
emergence

Additive and nonadditive genes Zunjare et al., 2015
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Table 3. Sources of resistance to major insect pests of field crops

Crop Insect Sources of resistance Reference
Rice Brown 

planthopper
Mudgo, ASD7, Rathu Heenati, Babawee, ARC10550, 
Swarnalata, T12, Chin Saba, Balamawee, N22, 
ARC10239, ADR52, PTB 33, Sinna Sivappu

Ling and Weilin, 2016

Rice White backed 
planthopper

ADR 52, Podiwi A8, ARC 6650, ARC 5984, MO 1, 
Velluthecherra, 

Padmavathi et al., 2017

Rice Stem borer W 1263, TKM 6, Ratna, Sasyasree, Vikas Makkar and Bentur, 2017
Rice Leaf folder W 1263, TKM 6, ARC 10840, Darukasail Bentur and Kalode, 1990
Sorghum Shoot fly IS 18551, ICSV 705, ICSV 708, SPSFR 94019, SPSFR 

94006, SPSFR 94007, SPSFR
94011, SPSFR 94034, , SPSFR 96069, SPSFR 86065, 
PS 23585, ICSR 89058; PBMR3, PBMR7, PBMR8, 
NRCSFR09-3, GMR309, 

IIMR, 2016

Sorghum Stemborer IS 1044, IS 1054, IS 2123, IS 2263, IS 2269, IS 5469, IS 
5566, IS 12308, IS 13100,
IS 18333, and IS 18573

Sharma et al., 2003

Sorghum Aphid HB 37, PE 954177, IS 8100C, R128, R131, and R133 Sharma, 1993 
SPS43, SLR37, TAM428, SLB81, KR191, Long SPS43, 
and SLR37

Bhagwat et al., 2011

Sorghum Midge IS 3461, IS 9807, IS 10712, IS 18563, IS 19476, IS 
21873, IS 21881, IS 22806, PM
15936-2, and ICSV 197

Sharma et al., 2002

Pearl millet Shoot fly MH 1975, MH 1828, MH 195 AICPMIP, 2014
Pearl millet Stem borer Zongo Gahukar 1984
Pearl millet Sugar cane 

leafhopper
MH–1121, Saburi, CZP–9082 ICAR, 2002–07

Pearl millet Chinch bug 07F-1226, 07F-1229, 07F-1231, 07F-1235, 07F-1238, 
07F-1239, and 07F-1240

Ni et al., 2009

Foxtail millet Shoot fly SIA 1538, SIA 1533, SIA 1507, SIA 1581, SIA1566, SIA 
1549

Kalaisekar et al., 2017

Kodo millet Shoot fly RPS 40-1, RPS 40-2, RPS 62-3, RPS 72-2, RPS 120-1, 
IPS 6, IPS 32, IPS 110, IPS
131, IPS 142, IPS 178, Keharpur

Murthy and Harinarayana, 
1989

Wheat Hessian fly Triticum aestivum accessions Grant, Patterson, 
86981RC1-10-3, 8268G1-19-49, KS89WGRC3 (C3), 
KS89WGRC6 (C6)

Dweikat et al., 1997

Wheat Russian wheat 
aphid

Triticum aestivum genotypes PI 137739, PI 262660, PI 
294994, PI 372129, PI 243781

Joukhadar et al., 2013

Green bug Aegilops tauschii accessions Zhu et al., 2005
Chickpea Podborer Vijay, Vishal, ICCV 10, ICPL 88034, ICCL 86103 Sharma et al., 2014

Wild relatives as sources of diverse genes for insect resistance

Wild relatives of cultivated crops possess several 
desirable genes that can confer resistance to insects 
(Mammadov et al.,, 2018; Khan et al., 2020). Wild 

relatives of crops have different mechanisms/genes 
conferring resistance to insect pests and can be 
exploited to diversify the basis and increase the levels 
of resistance to insect pests (Table 4).
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The two genes zFPP and ShZIS coding enzymes that 
synthesized the sesquiterpene 7-epizingiberene were 
transferred from tomato (Lycopersicon esculentum) 
wild variety to cultivated variety expressed in 
trichomes, the plant showed enhanced protection 
against multiple insects (Douglas, 2018). Arcelins are 
insecticidal proteins, obtained from wild accessions 
of the common bean (Phaseolus vulgaris Linnaeus), 
with resistance against bruchid beetles. Arcelin protein 
purified from hyacinth bean (Lablab purpureus) had the 
ability to manage storage pest in cereals transformed 

with L. purpureus defense related gene (Janarthanan 
et al., 2008). The chemical composition of arcelin has 
many similarities with lectin including agglutinating 
activity. Till date, different allelic variants (designated 
Arc-1–7) of arcelin proteins have been described, with 
molecular weight in the range of 27-42 kDa. Of great 
interest are the insecticidal properties of arcelin variants 
toward bruchid pests and, in particular, their inhibitory 
effect on the larval development of the Mexican bean 
weevil (Zabrotes subfasciatus Boheman) (Karuppiah 
et al., 2018).

Table 4. Wild relatives resistant to insect pests of field crops

Crop Insect pests Wild species Reference
Rice Brown planthopper Oryza eichingeri, O. minuta, O.latifolia, 

O. australiensis, O.nivara, O.rufipogon,
O. longistaminata, O. glumaepatula, 
O. officinalis, O. australiensis, 
O. punctata, O. minuta, O. latifolia 

Khush and Brar, 1991; 
Ling and Weilin, 2016

Sarao et al., 2016

Rice Whitebacked planthopper O.officinalis, O.latifolia Sanchez et al., 2013 
Rice Stemborer   O. brachyantha, O. minuta Brar and Khush, 1997
Rice Yellow stem borer O. glaberrima, O longistaminata Bhattacharya et al., 2006 

Makkar and Bentur, 2017
Rice Gall midge O. brachyantha, O. coarctata 

O. eichingeri, O. granulata, and O. ridleyi
Israel et al., 1963

Rice Leaf folder O. perennis, O. punctata, 
O. australiensis, O. nivara

Khan et al., 1989

Sorghum Shoot fly         
Spotted stemborer 

Sorghum laxiflorum, S. australiense
S. brevocallosum, S. dimidiatum
S. purpureosericeum

Venkateswaran, 2003

Sorghum Midge Sorghum angustum, S. amplum
S. bulbosum

Sharma and Franzmann, 2001

Wheat Hessian fly Aegilopos tauschii, 
Triticum ventricosum, T. turgidum

Clement, 2002

Wheat Russian wheat aphid T. monococcum, T. turgidum Kaplin et al., 2015
Cotton Helicoverpa armigera

 (Hubner)
Gossypium thurberi, G. somalense
G. armourianum, G. barbosanum

Singh and Narayana, 1994

Pigeon pea H.armigera Cajanus scarabaeoides
C. sericeus, C. acutifolius

Sharma et al., 2001
Green et al., 2006

Chickpea H.armigera Cicer bijugum, C. reticulatum
C. judaicum, C. microphyllum

Sharma et al., 2005 a,b

Insect resistant QTLs identified in major field crops

A large number of insect pest resistance QTLs have 
been identified in major field crops. The gene mapping 
of Bph7 can be utilized for map-based cloning and 

eventually in development of BPH-resistant lines 
in rice (Jaganathan et al., 2020). A joint analysis 
for Busseola fusca and C. partellus revealed that 
marker CS132-2 was co-localized for leaf toughness 

Insect resistance in field crops  
                                                                     Ch Padmavathi and P G Padmaja



10

and stem tunneling traits on two individual QTLs 
identified; thus, suggesting that the two traits can be 
improved using the same linked marker (Muturi et 
al., 2021).

However, only a limited number of actionable 
targets are known due to a lack of fine mapping and 
functional characterization. There is a rising need to 
clone and characterize the candidate genes underlying 
the identified QTLs, using fine mapping and map-
based cloning approaches (Jaganathan et al., 2020). 
Such genes would shed light on the molecular 
mechanisms of insect resistance in crop plants. The 
ultimate objective of mapping and cloning insect pest 
resistance genes and unraveling the underlying defense 
mechanism is to facilitate the breeding of insect-
resistant crop varieties, which represents an efficient, 
cost-effective, and environmental-friendly pest control 
strategy. 

Over the past decade, QTL mapping has been used 
to characterize antixenotic, antibiotic resistance, and, to 
a lesser extent, plant tolerance, thereby increasing the 
possibility to develop arthropod-resistant germplasm 
with which to examine the individual effects of specific 
QTL (Table 5). Such knowledge about specific QTL 
provides the potential to broaden the genetic bases of 
arthropod plant defense and to develop more durable 
resistance

Use of the identified sources of resistance in breeding 
programs

A number of resistant sources were identified 
for different pests in various crops and theses were 
utilized for the development of an insect resistant 
variety (Fig. 2). The Hessian fly resistant varieties 
released in Morocco offer at least 32% higher 
grain yield than traditional varieties, under normal 
Hessian fly infestation levels (EI Bouhssini et al., 
2021). Seven chickpea breeding lines with resistance 
to leaf miner and good agronomic characters were 
developed using two resistant parents (Malhotra et 
al., 2007) (Table 6).

Multiple insect pest resistance

Efforts have also been put in trying to find 
combined resistance to multiple insect pests in wheat-
rye and Aegilops speltoides Tausch translocation and 
substitution lines. Three genotypes were identified 
with combined resistance to Hessian fly and three aphid 
species (Sitobion avenae Fabricius, Rhopalosiphum 
padi L. and Schizaphis graminum Rondani) and one 
genotype with resistance to Russian wheat aphid and 
to the same three aphid species. This is the first report 
of combined resistance to four pests. These sources 
are currently being used in the bread-wheat breeding 
programs at CIMMYT and ICARDA to transfer the 
multiple pest resistance to elite germplasm (Crespo-
Herrera et al., 2019).

INDUCED RESISTANCE

The mechanisms of inducible plant defense 
responses are based on changes in gene expression. 
Zhu-Salzman et al. (2004) evaluated the transcriptional 
changes in a sorghum cultivar by comparing expression 
patterns of 672 cDNAs in the seedling tissues before 
and after infestation by greenbug or following 
treatment with defense signal components such as 
salicylic acid (SA) or methyl jasmonate (MJ). Their 
results indicated that activation of certain transcripts 
regulated exclusively by greenbug infestation was 
observed, and the expression patterns may represent 
unique signal transduction events independent of 
MJ- and SA-regulated pathways. More recently, 
the transcriptional changes in a parallel system was 
examined in greenbug-resistant and -susceptible 
genotypes of sorghum leading to detection of the 
abundance of the transcripts corresponding to 2,304 
sorghum genes during the infestation by virulent 
greenbug biotype I (Park et al., 2006). The experiments 
showed comprehensive gene activation resulting from 
up-regulating, or activating existing defense pathways 
in sorghum seedlings in response to greenbug feeding. 
Among the induced genes identified, 38 genes exhibited 
threefold or higher abundance in their expression, and 
26 genes were significantly repressed. 
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Table 5. QTLs mapped/ fine mapped/ cloned for insect pest resistance in some field crops

Crop Insect QTL/genes References
Rice BPH >40 genes/QTLs Zang et al. 2020; Li et al., 2019

Balachiranjeevi et al., 2019; 
Mohanty et al., 2017

Rice WBPH 23 genes/QTLs Yang et al., 2014; Fan et al., 2018
Rice African rice gall midge qAfrGM4 Yao et al., 2016
Rice Asian rice gall midge 12 genes Himabindu et al., 2010; Sama et al., 2014; Divya 

et al., 2015,2018; Leelagud et al., 2020; Bentur et 
al., 2021

Sorghum Shoot fly SBI-05 Satish et al., 2009; Aruna et al., 2011; Kiranmayee 
et al., 2015; Gorthy et al., 2017

Sorghum Stemborer 29 QTLs Vinayan, 2010 
Sorghum Midge Two QTLs (SBI-03 and 

SBI-09)
Tao et al., 2003

Sorghum Green bug 9 QTLS Agrama et al., 2002
Wheat Hessian fly H35 and H36

h4, H7 and H8
Zhao et al., 2020; Niu et al., 2020; Liu et al., 2020

Wheat Russian wheat aphid QDn.unlp genes Ricciardi et al., 2010
Wheat Sunn Pest Ei1 Emebiri et al., 2017
Maize Fall armyworm   62 QTNs  Badji et al., 2020
Maize Corn leaf aphid   HDMBOAGlc 

  QTL
 Betsiashvili et al., 2015; Meihls et al., 2013

Soybean Aphid Rag6 and Rag3c
R_P746
QTL_13_1 and QTL_13_2

 Zhang et al., 2017; Xiao et al., 2014
 Jun et al., 2013

Soybean Whitefly qRWF-1 and qRWF-5-1 Zhang et al., 2013
Chickpea Helicoverpa armigera 9 QTLs Barmukh et al., 2021

Table 6. Crop varieties resistant to Insect Pests 

Crop Insect Pests Varieties Reference
Rice Brown 

planthopper
Jyothi in Kerala, Sonasali, Vajram, Chaitanya in AP, Neela and Udaya 
in Orissa and Manasarovar across the country

Jena et al., 2018

Krishnaveni, Vajram, Pratibha, Mekom, Pavizham, Co-42, Chandana, 
Nagarjuna, Rasmi, Jyothi, Bhadra, Neela Annanga, Daya, Aruna, 
Kanaka, Remya, Bharatidasan, Karthika, Vijetha, Cotton Dora Sannalu

Pasalu et al., 2005

Rice Yellow 
stemborer

Vikas, Ratna, Sasyasree Bentur et al., 2021

Rice Gall midge Sneha, Pothana, Kakatiya Erramallelu, Kavya, Rajendradhan 202, 
Karna, Ruchi, Samridhi, Usha, Asha, MDU 3, Bhuban, Samalei, 
Orugallu, Abhaya, Shakti, Suraksha, Daya, Pratap, Udaya, IR 36, 
Shaktiman, Tara, Kshira, Sarasa, Neela, lalat, Phalguna, Mahaveer,  
Vibhava, Divya, Dhanya Lakshmi, Surekha, Vikram, Kunti, Triguna

Pasalu et al., 2005

Rice Green 
leafhopper

Vikramarya, Lalat, Khaira, Nidhi Pasalu et al., 2005

Chickpea Leaf miner FLIP 2005-1C, 2C, 3C, 4C, 5C, 6C, 7C Malhotra et al., 2007
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Fig. 2. Steps in the development of insect resistant variety

INSECT RESISTANCE - ADVANTAGES AND 
LIMITATIONS

Insect resistant varieties assume a central role in the 
Integrated Pest Management (IPM) aiming to increase 
production and productivity of crops by reducing the 
pest damage and protecting the environment. Major 
advantages include specificity, compatibility and 
environmental safety. Effects of plant resistance are 
cumulative over consecutive generations. Most of the 
insect resistant varieties express moderate to high level 
of resistance to target pests throughout the crop season. 
It is specific to the target pest and generally has no 
adverse effects on non-target organisms. Growing a 
resistant variety does not involve any additional costs 
to the farmers (Dar et al., 2006). 

Development of pest-resistant varieties requires 
expertise and resources. Commitment of relatively 
long-term funding is a critical factor in the ultimate 
success of HPR. It takes relatively long time to 
identify and develop pest-resistant cultivars. This 
method is not suitable to solve sudden or localized pest 

problems. Absence of adequate levels of resistance in 
the available germplasm may deter the use of HPR 
for managing certain pests. Such limitations can 
now be overcome through the use of interspecific 
hybridization and genetic transformation. Occurrence 
of new biotypes of the target pests may limit the use 
of certain varieties in time and space. Under such 
situations, one has to continuously search for new 
genes, and transfer them into high yielding varieties. 
Certain plant traits may confer resistance to one pest, 
but render such plants more susceptible to other pests, 
e.g., hairiness in cotton confers resistance to jassids, 
but such varieties are preferred for oviposition by 
bollworms (Earias vittella and Helicoverpa armigera) 
(Sharma and Agarwal, 1983). Also, pubescence in 
soybean confers resistance to leafhoppers, but pod 
borer (Grapholitha glycinivorella) prefers pubescent 
varieties for oviposition (Nishijima, 1960). Varieties 
with high levels of resistance to sorghum midge are 
susceptible to head bugs, shoot fly, and stem borer 
(Sharma, 1993).
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Insect biotypes 

Painter (1941) defined the term “biotype” to 
situations where the insect response was indifferent 
to crop plants developed for their resistance to insect 
feeding. Biotypes represent evolutionary transients in 
the process of speciation and develop through natural 
selection acting upon genetic variations within the 
pest populations. The continous growing of insect 
resistant varieties may lead to certain physiological 
and biochemical changes in insect pests so that 
they are capable of feeding and developing on the 
resistant variety (Dhaliwal and Arora, 2009). Biotypes 
have been reported to occur in 36 crop pest species 
belonging to 17 arthropod families in six orders 
(Saxena and Barrion, 1987; Table 7). Almost 50% of 
these pest species with known biotypes are aphids. A 
disadvantage of both conventional and transgenic 
insect resistance is loss of function when insect strains 
evolve virulence to high levels of resistance genes. 
Virulence in brown planthopper Nilaparvata lugens and 
Hessian fly Mayetiola destructor is correlated with the 

genetic complexity of plant resistance, with varieties 
containing single resistance genes failing within 6-8 
years after release years (Horgan, 2018; Johnson et 
al., 2017). More durable polygenic resistance has 
proven effective in several crops. Rice resistance to N. 
lugens and wheat resistance to wheat curl mite Aceria 
toschiella, has been shown to suppress virulence to 
these pests for >10 years (Mackill and Khush, 2018; 
Khalaf et al., 2019). In soybean plant resistance to 
damage by foliar feeding lepidoptera, a combination of 
both conventional and transgenic polygenic resistance 
has been developed. The soybean near-isogenic line 
Benning ME contains two major quantitative trait 
loci (one each from linkage group M and linkage 
group E) for effective field resistance to defoliation by 
soybean looper, Chrysodeixis includens, and Southern 
armyworm, Spodoptera eridania (Ortega et al., 2016). 
Further, Benning ME resistance is significantly greater 
in Benning ME plants that also contain the cry1Ac 
transgene. To slow down the process of biotype 
selection, crop cultivars with broad genetic bases are 
needed.

Table 7. Insect biotypes in field crops

Crop Insect No. of biotypes Reference
Rice Green leafhopper Nephotettix virescens (Distant) 3 Rosida et al., 2020
Rice Brown planthopper Nilaparvatha lugens (Stal) 5 Jena and Kim, 2010
Rice Gall midge Orseolia oryzae (Wood Mason) 7 Vijayalakshmi et al., 2006
Sorghum Green bug Schizaphis graminum 11 Porter et al., 1997
Sorghum Stem borer Chilo partellus 4 Dhillon et al., 2021
Wheat Hessian fly Mayetiola destructor (Say) 16 Shukle 2008
Wheat/Barley Aphid Sitobion avenae 6 Wang et al., 2020
Wheat Green bug Schizaphis graminum 7 Kharrat et al., 2012
Corn Corn leaf aphid Rhopalosiphum maidis (Fitch) 4

Evolution of biotypes among insect populations 
is a potential threat to the durability of host plant 
resistance. New insect biotypes can be tackled by 
pyramiding known resistance genes or QTLs. Due to 
the development of biotypes, successful cultivation 
of resistant varieties may be seriously constrained. 
Hence, identification of new genes by continuous 
and systematic evaluation of various germplasm 
resources should become a major program while 

developing insect resistant varieties. Breeders has to 
adopt a strategy of developing cultivars with polygenic 
resistance or search for new sources of resistance genes 
followed by their introgression into high-yielding 
popular cultivars (Jena and Kim, 2010). Additionally, 
cultivars having diverse mechanisms of resistance 
against prevalent insect biotypes should be utilized 
(Sharma, 2009). 
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NOVEL STRATEGIES IN DEVELOPING INSECT 
RESISTANT PLANTS

Marker assisted selection (MAS) 

The typical breeding programme selection procedure 
is accelerated by MAS. Since the selection is based 
solely on particular genes, MAS frequently modifies 
the selection criteria (Francia et al., 2005). Because 
there are now a growing number of distinct molecular 
markers available, MAS can be used to pick both simple 
and quantitative features (Mohan et al., 1997).

The ultimate utility of identification of genomic 
regions conferring resistance to different insect 
pests in a breeding programme is to mobilize such 
specific QTLs into different genetic backgrounds via 
MAS to develop resistant cultivars (Fig. 2). Many 
resistant genes to BPH have been identified (Bph1, 
Bph3, Bph14, Bph15, Bph17, Bph18). Successful 
introgression of Bph14 and Bph15 (He et al., 2019; 
Wang et al., 2019); Bph3 (Qing et al., 2019) have been 
reported to provide higher levels of resistance in the 
recurrent parent. Several gall midge resistance genes 
have been identified (Gm1, Gm2, gm3, Gm4, Gm5, 
Gm6, Gm7, Gm8, Gm9, Gm10 and Gm11) and used in 
breeding rice against different biotypes of gall midge. 
The introduction of the gall midge resistance genes 
Gm4 and Gm8 for the enhancement of RPHR-1005 by 
marker-assisted backcross breeding (MABB) (Kumar 
et al., 2017) and the introduction of the Gm1 and Gm4 
genes together with eight additional genes/QTLs for 
various traits in Improved Lalat via MABB are two 
examples of this (Das and Rao 2015).

Gene pyramiding

Using Gm4 and Gm8, the research group at 
ICAR-IIRR (Kumar et al., 2017) has developed gene-
pyramided lines in the genetic background of the 
elite restorer line RPHR1005R (restorer line for the 
popular rice hybrid DRRH3) through marker-assisted 
breeding. In another such effort, the high-yielding 
rice variety Akshayadhan has been improved for its 
resistance against gall midge by targeted transfer of 
Gm4 and Gm8 genes. Sama et al. (2014) introduced 

the recessive gene gm3 into the genetic background of 
elite rice variety Improved Samba Mahsuri with the 
help of markers. In a recent report (Venkanna et al., 
2018), two major resistance genes, gm3 and Gm8, 
have been pyramided in the genetic background of 
the fine grain-type rice variety Kavya, which already 
possesses Gm1. Now that closely linked markers/
functional markers are available for all the major gall 
midge resistance genes, selected gene combinations 
can be pyramided into elite genetic backgrounds 
(Divya et al., 2018c) easily through marker-assisted 
breeding for developing durable multiARGM biotype-
resistant rice cultivars/hybrids.

RNAi Approach

In plant tissues consumed by insects, the double-
stranded RNAs specific to important insect genes 
can be expressed persistently. This can cause the 
RNAi pathway to start degrading the mRNAs 
produced by the key insect genes (Price and 
Gatehouse, 2008; Agarwal et al., 2012). Targets of 
RNA interference (RNAi) for key genes in insects 
have been identified. These include genes encoding 
developmental proteins, digestive enzymes, salivary 
gland proteins, nervous system regulatory proteins, 
proteins involved in host-insect interaction, 
hormone receptors, gut enzymes, and metabolism-
related proteins (Gatehouse, 2008; Huvenne and 
Smagghe, 2010; Kola et al., 2015). RNA-driven 
post-transcriptional homology-based gene silencing 
via the mRNA degradation pathway is known as the 
RNA interference (RNAi) strategy. This pathway is 
present in all eukaryotic organisms.

Double-stranded RNAs (dsRNA) that are processed 
by the protein Dicer, which resembles RNase-III, to 
form small interfering RNAs (siRNAs). An RNA-
induced silencing complex (RISC) is directed to the 
target mRNA by the siRNA’s guide strand. The use of 
the RNAi technology for insect resistance in rice is 
still in the early stages of development. The majority 
of studies on RNAi in rice focus on BPH and YSB 
(Zha et al., 2011; Zhou et al., 2013; Wang et al., 2018a; 
Renuka et al., 2017).
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According to Li et al. (2015), dsRNAs are stable 
in a variety of conditions and can be ingested by the 
roots of crop plants. This discovery opens up the 
possibility of using dsRNAs as biopesticides. RNAi 
can be successfully employed as a control strategy 
against insect pests (Huvenne and Smagghe, 2010;). 
Upon feeding on plant parts, dsRNA enters into the 
insect gut, leading to the induction of RNAi machinery 
and then, silencing of the target gene in the insect 
pest. Kola et al. (2016) demonstrated that feeding 
YSB larvae with dsRNA of amino peptidase N (APN) 
and cytochrome P450 derivative (CYP6) lowered 
expression of target genes and increased larval 
mortality after 12–15 days. In a similar manner, Zeng 
et al. (2018) used the injection of dsRNAs to knock 
down three chemosensory protein (CSP) genes in 
rice leaffolder (C. medinalis), which decreased insect 
responsiveness to the particular chemicals. 

To achieve an effective RNAi based insect pest 
control, careful identification of specific target insect 
enzymes and proteins, efficient delivery methods 
of introducing dsRNA into insect cells/bodies, and 
stabilization of dsRNAs during and after delivery are 
certain key issues which need immediate concern. In 
addition, RNAi technology coupled with Bt or other 
technologies offers a great choice in controlling the 
insect pests, which are prone to develop resistance 
against insecticidal proteins. However, to establish the 
true potential of host-induced RNAi to combat insect 
pests, further development and refinement of this 
technology in large-scale field tests are required. 

Genetically modified crops 

Transgenic technology has been effective 
against a wide range of pests including coleopteran, 
lepidopteran, hemipteran and dipteran pests. Major 
focus was laid predominantly on such genes that 
have demonstrated positive effects and proved to be 
of commercial success at the market primarily due 
to the development of pest-resistant transgenic food 
crops with expression of Bacillus thuringiensis toxins. 
In India, cotton (Gossypium hirsutum Linnaeus) and 

soybean (Glycine max Linnaeus) are the approved 
genetically modified crops. In 2014 GEAC (Genetic 
Engineering Appraisal Committee) approved 11 
crops for the field trials which includes maize, rice, 
wheat, groundnut, sorghum and cotton (Table 8). A 
Moratorium was laid on Bt Brinjal in 2010 by the 
Indian Government which crippled the research on 
transgenic crops. The data generated by India was taken 
by the Bangladesh and 25,000 farmers cultivated Bt 
Brinjal and made it a success. USA, Brazil, Argentina, 
Canada, and India altogether have 91% of the global 
biotech crop area (Brookes and Barfoot, 2017). 
According to ISAAA (The International Service for 
the Acquisition of Agri-biotech Applications), the 
USA has 203 GM crops approved with 21 variants, 
cultivating food crops like maize, soybean, canola, 
sugar beet, papaya, squash, potato, livestock feed 
like alfalfa and a commercial crop cotton in nearly 
70.1 million hectares in USA, followed by Brazil, 
Argentina, Canada and India. The information from 
ISAAA proclaims that around 2.7 billion hectares 
of biotech tech crops planted since 1996. Malawi, 
Ethiopia and Nigeria have planted Bt cotton for the 
first time in 2019. Recently, GEAC has approved 
genetically modified mustard (Dhara Mustard 
Hybrid – 11 (DMH-11)) for commercial cultivation, 
paving the way for India’s first transgenic food crop 
(https://geacindia.gov.in/Uploads/MoMPublished/ 
MoMPublishedOn20221025200345.pdf).

Out of 11 approved GM crop cultivars six are of 
cotton Gossypium hirsutum L. and the rest five are 
Soybean Glycine max L. But Intacta™ Roundup 
Ready™ 2 Pro is the only Bt gene incorporated crop. 
Continued use of transgenic crops is threatened by 
the evolution of resistance in insect populations. To 
overcome this, several research groups are assessing 
the potential of using non-Bt insecticidal proteins such 
as lectins (carbohydrate-binding proteins), vegetative 
insecticidal proteins (VIP), proteinase inhibitors 
(cowpea trypsin inhibitor), ribosome-inactivating 
proteins, secondary plant metabolites, small RNA 
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viruses, and chemical elicitors that boost the signaling 
pathways (Makkar and Bentur, 2017; Sobhy et al., 
2014; Bektas and Eulgem, 2015).

Genome editing strategies

Genome editing tools enable us to edit the genome 
or specifc genes of an organism by addition/deletion 
or replacement of nucleotides with high precision and 
with few off-target effects. Because of its simplicity and 
wider applicability, genome editing is being practiced 
in many laboratories for functional genomics and trait 
improvement (Zhu et al., 2020). In agriculture, the 
technology has immense potential to improve yield and 
abiotic and biotic stress tolerance of crops (Table 9).

Many insect pests identify host plants through the 
plants’ volatile cues, morphological features, plant 
phenology, visual cues, odor and taste clues, and 
oviposition sites, among others (Larsson et al., 2004). 
An insect selects a particular plant for its oviposition 
site based on the availability of desired feed for its 
young ones. Plant morphological features play an 
important role in the ability of insect pests torecognize 

and damage a particular host. Modification in 
pigmentation of plants has been found to alter insect 
host preferences. Upregulation of anthocyanin 
pigmentation produced red leaves in a transgenic 
tobacco plant. This alteration in leaf color acted as 
a deterrent for the pests, H. armigera and S. litura, 
thereby confirming the significance of leaf color on 
host recognition in insect pests (Malone et al., 2009). 
Taken together, engineering of specific metabolic 
pathways in plants resulting in a change in plant 
visual appearance can be used as a plausible approach 
for CRISPR/Cas9-based editing for management of 
insect pests. CRISPR/Cas9 induced mutagenesis of 
vestigial gene (vest) developed wingless adults of 
Colorado potato beetle with no elytron formed (Gui et 
al., 2020). Targeting the genes responsible for mating 
partner identification and chemical communication 
using genome editing technology is another strategy 
to control insect pests. These two properties are very 
crucial to establish insect-plant interaction, like the 
olfactory receptors in insects that help to sense the 
odorant of a mating partner and to develop host-plant 
interaction via chemical signaling.

Table 8. Genetically modified crops approved in India with Bt genes incorporated
S. 

No. Event name Genes
incorporated Source Function     

1 BNLA-601 cry1Ac Bacillus thuringiensis subsp.
kurstaki strain HD73

Confers resistance to lepidopteran insects by 
selectively damaging their midgut lining

2 JK 1 TRADE
NAME

cry1Ac &nptII* Bacillus thuringiensis
subsp. kurstaki strain
HD73 

Confers resistance to lepidopteran insects 
& allows transformed plants to metabolize 
neomycin and kanamycin antibiotics during 
selection

3 GFM Cry1A cry1Ab-Ac delta 
endotoxin (fusion 

protein) nptII* uidA*

Synthetic fusion gene
derived from Bacillus
thuringiensis

Confers resistance to lepidopteran insects & 
produces blue stain on treated transformed 
tissue, which allows visual selection

4 MLS 9124 cry1C delta 
endotoxin

Synthetic fusion gene
derived from Bacillus 
thuringiensis

Confers resistance to lepidopteran
insects, specifically Spodoptera

5 Bollgard II™
Cotton

cry1Ac &cry2Ab
nptII*

uidA, aad*

Bacillus thuringiensis
subsp. kumamotoensis
& Bacillus thuringiensis
subsp. kurstaki strain HD73

Confers resistance to lepidopteran
insects by selectively damaging their midgut 
lining

6 Bollgard™
Cotton,
Ingard™

cry1Ac & cry2Ab
nptII* aad*

Bacillus thuringiensis
subsp. kurstaki strain
HD73

Confers resistance to lepidopteran
insects by selectively damaging their midgut 
lining

7 Intacta™
Roundup
Ready™ 2 
Pro

cry1Ac & cp4
epsps*

Bacillus
thuringiensis
subsp.
kurstakistrain HD73

Confers resistance to lepidopteran
insects by selectively damaging their midgut 
lining, conferring increased tolerance to 
glyphosate herbicide
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Koutroumpa et al. (2016) mutated Or83b gene 
using CRISPR/Cas9 system, which caused defect in 
olfactory receptors and disturbed the selection of host 
for laying eggs. Insects produce unique enzymes that 
can be used to overcome the plant defense systems by 
releasing detoxification chemicals. Targeting these 
detoxification genes can increase the susceptibility of 
insects, especially in polyphagous species. CYP71A1 

gene encodes tryptamine 5-hydroxylase that stimulates 
the production of serotonin from tryptamine, and plays 
a crucial role in stunted growth of plant hoppers. 
The mutant population showed increased resistance 
against striped stem borer (Chilo suppressalis) and 
brown planthopper (Nilaparvata lugens) in rice  
(Lu et al., 2018). 

Table 9. Genome editing in insects for pest management 
Trait Target insect Target gene Reference

Body segmentation Spodoptera litura Slabd-A (S. litura abdominal-A) (targeted 
mutagenesis)

Sun et al., 2017

Spodoptera frugiperda Sfabd-A (indel mutations) Wu et al., 2018

Plutella xylostella abdominal-A (gene knockout) Sun et al., 2017

Mating time and partner Helicoverpa armigera OR16 (odorant receptor 16) (gene knockout) Sun et al., 2017

Spodoptera littoralis Orco (olfactory receptor coreceptor) (gene 
knockout)

Koutroumpa et al., 2016

Regulation of detoxifica-
tion enzymes

Helicoverpa armigera CYP6AE gene cluster (gene knockdown) Wang et al., 2018b

(Source: Tyagi et al., 2020)

CONCLUSIONS AND WAY FORWARD

Significant progress has been made in the breeding 
and commercial utilization of insect resistant varieties 
in various field crops. However, there are still numerous 
important insect pests throughout the World for which 
host plant resistance as a management tactic has not 
been adequately utilized. Innovative conventional 
breeding techniques and molecular genetic approaches 
may provide means for fully exploiting various 
resistant sources like wild species, land races and 
breeding lines in the development and utilization of 
durable and stable resistant cultivars for various insect 
pests. 

Traditional breeding has been the sole approach 
used for breeding insect resistant plant varieties to 
cope with the losses caused by insect pests in various 
crops. However, emerging insect pests as well as 
unpredictable climate changes have forced scientists 
to search for alternative solutions to cope up these 
problems. Recent advances in biotechnological 
applications have provided a number of opportunities 
to breed trait specific insect resistant plants. 

Integration of insect resistant varieties in IPM 
along with cultural, biological and chemical control 
tactics is the need of the hour not only to reduce crop 
losses caused by insect damage but also to reduce 
the use of toxic pesticides and protect the human and 
environmental health. 

However, in order to fully exploit the enormous 
potential of biotechnology, appropriate biosafety 
regulatory frameworks and proper stewardship 
programs need to be effectively implemented. This 
integrated approach can promptly help respond to the 
ever-dynamic threat of pests and hence reliably combat 
food insecurity and ably contribute to sustainable 
development.
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