MORPHOLOGICAL AND BIOCHEMICAL VARIATIONS IN GROUNDNUT GENOTYPES AS RELATED TO THRIPS SCIRTOHRIPS DORSALIS HOOD RESISTANCE

Burjikindi Madhuri1*, Rohini Sugandi2, Kolli Bhargavi1, Basavaraj S Yenagi2 and Subhash B Kandakoor2

1Professor Jayashankar Telangana state Agricultural University, Hyderabad 500030, Telangana, India
2University of Agricultural Sciences, Dharwad 580005, Karnataka, India

*Email: madhuriburjikindi2016@gmail.com (corresponding author): ORCID ID 0009-0008-9513-9158

ABSTRACT

Nineteen groundnut genotypes have been evaluated for resistance to thrips Scirtothrips dorsalis Hood. Thrips incidence and foliage damage were assessed and correlated with the morphological and biochemical components. The results revealed that none of the genotypes were completely free. Three genotypes were categorized as resistant (Dh-256, RST-1-2020-12 and INS-1-2020-11). Biochemical analysis indicated that higher amount of proteins, wax content and chlorophyll content were recorded in the resistant Dh 256 and these have negative relationship with incidence and damage.

Key words: Scirtothrips dorsalis, amino acids, biochemical characterization, foliage damage, leaf water content, morphological characters, protein, relative chlorophyll content, screening, susceptible, terminal bud, wax content

Groundnut Arachis hypogaea L. is an important oilseed crop. More than 50 insects had been reported to attack groundnut. Among them, leafhoppers and thrips, Scirtothrips dorsalis Hood is more during summer (Sonawane et al., 2019); S. dorsalis alone cause significant economic losses to the tune of 48.5% (Sivasubramanian and Palaniswamy, 1986). Their incidence will be right from vegetative stage till harvesting. They survive in young folded leaflets and flowers and known to transmit peanut bud necrosis disease (PBND) (Rajashree et al., 2021); S. dorsalis damage is marked by the “silvering” of leaves (Srinivasan et al., 2018). Insecticides are the most effective weapons for combating sucking insects. Because S. dorsalis can develop resistance, employing insecticides on a regular basis is not an effective method (Rahman et al., 2022). Hence, resistant cultivars will be one of the most promising ecofriendly measures and hence this study.

MATERIALS AND METHODS

Nineteen genotypes of A. hypogaea were evaluated for resistance to S. dorsalis under field conditions. The experiment was carried out at the AICRP on Groundnut, Main Agricultural Research Station in Dharwad during summer 2021. The genotypes were procured from the AICRP Groundnut in Junagadh and Dharwad. The TAG-24 was used as a susceptible check. All the genotypes were sown with susceptible checks after every 2nd entry in 5 m row length and spacing followed is 30 x 10 cm in two replications. The response of cultivars to thrips infestation was recorded based on visual observation of damage. i.e., curling of leaves by following 1 to 9% standard scale (Ranga Rao and Wightman, 1996; Kandakoor et al., 2014; Rahman et al., 2022). Counting thrips/terminal bud was done from randomly selected five plants in every genotype from each replication during early morning hours including susceptible check at 30, 40, 50, 60, 70, 80 and 90 days after germination. Considering the peak activity, the data recorded at 40 DAG has been considered for analysis and interpretation. The morphological parameters (wax content and relative chlorophyll content) and biochemical parameters (amino acid, protein and leaf water content) were estimated following standard procedures. The protein content was calculated using Lowry’s method (Lowry et al., 1951; Saleem et al., 2019). Leaf water content was assessed by determining the difference between fresh and dry weight (Gadad et al., 2014; Rajashree et al., 2021). Total free amino acid content was calculated using ninhydrin technique (Moore and Stein, 1954; Naralasetti and Katlam, 2023). The amount of chlorophyll was observed using SPAD chlorophyll meter (Minolta SPAD-502 meter) (Kariya et al., 1982; Naralasetti and Katlam, 2023). The leaf wax was determined using a colorimetric technique (Ebercon et al., 1977; Saleem et al., 2019). These variables
were correlated with thrips incidence alongwith morphological attributes and foliage damage, number of S. dorsalis (Rajashree et al., 2021).

RESULTS AND DISCUSSION

Scirtothrips dorsalis Hood was the only spieces found and among the 19 genotypes screened, none were completely free. However genotypes viz., Dh 256, RST-1-2020-12 and INS-1-2020-11 were categorized as resistant; 8 genotypes are moderately resistant, 4 susceptible and 4 highly susceptible (INS-I- 2020-1, TG-37A, TAG-24, Higholeic 107) (Table 1). The results indicated that, more the incidence, more foliage damage. Similar screening Patwari (2019) screened 36 groundnut genotypes against thrips and 33 were found moderately resistant/tolerant, 2 were found susceptible and ISKI-2017-05 recorded lowest thrips population.

The parameters such as amino acid content was positively correlated with incidence and foliage damage. In contrast, proteins, chlorophyll content and wax content revealed a negative correlation with their number and % foliage damage. Highest amount of protein, chlorophyll content and wax content is recorded in highly resistant genotype, Dh-256 (Table 1). Whereas, leaf water content was found to be non significant. Correlation of amino acid, protein, leaf water, relative chlorophyll and wax contents revealed coefficients of 0.985, -0.891, -0.101, -0.784 and -0.976. With thrips counts; except for leaf water content, others were statistically significant (p<0.05). When correlated with foliage damage these values were 0.979, -0.837, -0.070, -0.737 and -0.961, respectively; and except for leaf water content others were statistically significant (p< 0.05). Increased protein content is linked to increased plant defense enzyme activity as well as the synthesis of additional plant defense proteins. (War et al., 2015; Saleem et al., 2019). The main function of amino acids is to stimulate eating. Higher level of amino acids were recorded in highly susceptible variety, TAG-24. These findings closely align with the investigation of Kandakoor et al. (2014) and Naik and Chakravarthy (2017), Rajashree et al. (2021). Highest leaf water content was obtained in highly susceptible genotype TAG-24, whereas, lowest leaf water content was observed in susceptible genotype INS-1-2020-20. Hence, there is no significant role of leaf water content. These results are in confirmation with Somashekhar and Patil (2003), Naik and Somashekhar (2015). Similar results showing a negative correlation with chlorophyll concentration were published by Latha and Hanumanthraya (2018), Naralasetti and Katlam (2023). Increased levels of chlorophyll produced dark-coloured leaves, which may deter thrips (Shaw et al. 1991). Wax interferes with the feeding activity of insect that cause insect to reject host, which is strongly supported by Saleem et al. (2019) who disclosed that the wax composition is higher in the genotype resistant to Spodoptera litura in groundnut compared to susceptible check.

ACKNOWLEDGEMENTS

The authors thank the Department of Agricultural Entomology, AICRP on Groundnut (UASD) and Department of Biochemistry, University of Agricultural Sciences, Dharwad for support.

AUTHOR CONTRIBUTION STATEMENT

BM conducted the experiment and wrote the manuscript. RS designed the research and corrected the draft. KB helped in statistical analysis of data and proof reading of the Article. SBK and BSY corrected the draft. Spodoptera litura in groundnut (Arachis hypogaea L.) and their management. M.Sc. Thesis, University of agricultural Sciences, Bengaluru, India. pp 127.

REFERENCES

No conflict of interest.
Table 1. Relationship of morphological and biochemical characters of genotypes *S. dorsalis* in incidence and foliage damage in groundnut

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Genotypes</th>
<th>Thrips/terminal bud</th>
<th>Foliage damage (%)</th>
<th>Amino acids (mg/g)</th>
<th>Protein (mg/g)</th>
<th>Leaf water content (%)</th>
<th>Chlorophyll content (nmol/cm²)</th>
<th>Wax content (µg/cm²)</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INS-I-2020-1</td>
<td>6.45</td>
<td>35.15</td>
<td>4.81</td>
<td>4.06</td>
<td>71.00</td>
<td>34.30</td>
<td>0.21</td>
<td>HS</td>
</tr>
<tr>
<td>2</td>
<td>INS-I-2020-2</td>
<td>4.78</td>
<td>19.53</td>
<td>3.79</td>
<td>5.32</td>
<td>68.85</td>
<td>37.50</td>
<td>0.32</td>
<td>MR</td>
</tr>
<tr>
<td>3</td>
<td>INS-I-2020-3</td>
<td>4.60</td>
<td>17.62</td>
<td>3.65</td>
<td>5.43</td>
<td>70.94</td>
<td>38.40</td>
<td>0.33</td>
<td>MR</td>
</tr>
<tr>
<td>4</td>
<td>INS-I-2020-8</td>
<td>3.62</td>
<td>12.95</td>
<td>3.08</td>
<td>6.37</td>
<td>65.17</td>
<td>46.80</td>
<td>0.41</td>
<td>MR</td>
</tr>
<tr>
<td>5</td>
<td>INS-I-2020-11</td>
<td>3.10</td>
<td>9.85</td>
<td>2.96</td>
<td>7.16</td>
<td>71.90</td>
<td>46.70</td>
<td>0.41</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>INS-I-2020-12</td>
<td>5.36</td>
<td>23.85</td>
<td>3.91</td>
<td>4.93</td>
<td>61.52</td>
<td>35.50</td>
<td>0.29</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>INS-I-2020-13</td>
<td>5.45</td>
<td>24.25</td>
<td>3.98</td>
<td>4.84</td>
<td>62.82</td>
<td>36.70</td>
<td>0.27</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>INS-I-2020-20</td>
<td>5.86</td>
<td>29.33</td>
<td>4.41</td>
<td>4.59</td>
<td>60.33</td>
<td>29.70</td>
<td>0.24</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>INS-I-2020-21</td>
<td>4.85</td>
<td>19.82</td>
<td>3.80</td>
<td>4.93</td>
<td>62.93</td>
<td>29.20</td>
<td>0.29</td>
<td>MR</td>
</tr>
<tr>
<td>10</td>
<td>INS-I-2020-22</td>
<td>4.10</td>
<td>14.6</td>
<td>3.41</td>
<td>5.45</td>
<td>71.50</td>
<td>42.80</td>
<td>0.37</td>
<td>MR</td>
</tr>
<tr>
<td>11</td>
<td>AIS-2020-4</td>
<td>3.67</td>
<td>13.63</td>
<td>3.23</td>
<td>6.14</td>
<td>68.85</td>
<td>35.30</td>
<td>0.39</td>
<td>MR</td>
</tr>
<tr>
<td>12</td>
<td>AIS-2020-6</td>
<td>4.56</td>
<td>17.56</td>
<td>3.50</td>
<td>5.54</td>
<td>71.28</td>
<td>40.50</td>
<td>0.35</td>
<td>MR</td>
</tr>
<tr>
<td>13</td>
<td>RST-1-2020-12</td>
<td>2.80</td>
<td>9.50</td>
<td>2.78</td>
<td>7.82</td>
<td>72.50</td>
<td>45.10</td>
<td>0.43</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>Dhanalaxmi</td>
<td>5.65</td>
<td>27.35</td>
<td>4.05</td>
<td>4.74</td>
<td>67.33</td>
<td>31.00</td>
<td>0.27</td>
<td>S</td>
</tr>
<tr>
<td>15</td>
<td>Girnar 4</td>
<td>3.82</td>
<td>14.10</td>
<td>3.70</td>
<td>5.00</td>
<td>69.50</td>
<td>39.25</td>
<td>0.33</td>
<td>MR</td>
</tr>
<tr>
<td>16</td>
<td>TG-37A</td>
<td>6.27</td>
<td>34.60</td>
<td>4.56</td>
<td>4.06</td>
<td>68.21</td>
<td>41.20</td>
<td>0.24</td>
<td>HS</td>
</tr>
<tr>
<td>17</td>
<td>Higholeic 107</td>
<td>7.56</td>
<td>41.25</td>
<td>5.43</td>
<td>3.36</td>
<td>69.75</td>
<td>29.50</td>
<td>0.19</td>
<td>HS</td>
</tr>
<tr>
<td>18</td>
<td>Dh 256</td>
<td>2.56</td>
<td>8.95</td>
<td>2.56</td>
<td>10.03</td>
<td>70.45</td>
<td>48.80</td>
<td>0.46</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>TAG-24 (SC)</td>
<td>8.12</td>
<td>43.56</td>
<td>5.65</td>
<td>2.97</td>
<td>73.90</td>
<td>28.60</td>
<td>0.16</td>
<td>HS</td>
</tr>
</tbody>
</table>

‘r’ value: 0.986*

The injury rating was done based on brown coloration/damage on lower surface of leaves: 1-10% damage-injury rating (IR)1; Reaction Resistant (R); 1-20%-IR2, Moderately R; 21-30%-IR3, Susceptible; 31-40%-IR4, Highly Susceptible (HS); 41-50%-IR5, HS; 51-61%-IR6, HS; 61-70%-IR7; HS; 71-80%-IR8, HS; 81-90%-IR9, HS; 91-100%-IR10, HS. SC-susceptible check R-resistant MR-moderately resistant S-susceptible HS- highly susceptible; *significant at p=0.05

(Manuscript Received: January, 2024; Revised: January, 2024; Accepted: January, 2024; Online Published: February, 2024)